Interaction between matter and radiation: an introduction

Overview of the basic processes

Absorption (classical and quantum) Scattering (classical and quantum)

Basic elements to follows lectures

To introduce relativistic effects

Main interactions

Photon absorption: excitation

with or without emission of electrons

Photon scattering: elastic → Thompson (Magnetic) inelastic → Compton (Raman) Resonant (elastic and inelastic)

Experimental techniques

Absorption Photoemission

ScatteringElastic Scattering:Diffraction, SAXSInelastic Scattering:Compton, IXSResonant scattering:R(I)XS

Imaging

Fluorescence Yield Auger spectroscopy

What we measure in experiments?

Experimental techniques: what we measure?

Experimental Setup

Here is a schematic of the XAS experiment

Absorption
$$I_{T}(E) = I_{0}e^{-\mu(E)x}$$

 \succ $\mu(E)$ is called the absorption coefficient

- it describes quantitatively how the energy of a beam is transferred to the matter
- It is measured in m⁻¹

> In a thickness $1/\mu$ the intensity is reduced to 1/e

The cross section σ

 σ has no geometrical meaning: it is a measure of the interaction It is called "cross section"

 σ

 ΔS

 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

Absorption cross section

 $\begin{array}{c} \textbf{Absorption}\\ \textbf{Photons are removed}\\ \textbf{from the beam because}\\ \textbf{are absorbed } \sigma_{abs.} \end{array}$

Scattering cross section

Scattering Photons are removed because are partially scattered into a different direction

 $\sigma_{\text{scatt.}}$

Total cross section $\sigma = \sigma_{abs. +} \sigma_{scatt.}$

Differential Cross Section $d\sigma/d\Omega$

Cross section & Probability

Cross Sections: Classical definition

$$\frac{d\dot{N}}{\frac{sc.}{\dot{N}}} = \left(\frac{d\sigma}{d\Omega}\right) d\Omega \times (\rho dx)$$

$$\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}\Omega} = \mathbf{I}_{0} \times \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \times \left(\rho \mathrm{d}\mathbf{x}\right)$$

Differential cross section: it is the differential power scattered in $d\Omega$ normalized to the incoming power and to the density of scattering objects

Total cross section σ of atoms

Total cross section σ of atoms

Raman scattering cross section

IR vibrational cross section

Matter ←Interaction → Radiation I

Classical description

Radiation:

Electromagnetic waves are described by Maxwell equations

Matter:

Macroscopic optical constants: index of refraction, absorption coefficient, reflection coefficient, dielectric function...

Two independent constant are enough in isotropic materials

Deeper:

microscopic origin of optical constants: description of the matter as an ensemble of classical oscillator

Reflection and refraction

$$\nabla^{2}\vec{\mathbf{E}} - \mu_{0}\varepsilon_{0}\frac{\partial^{2}\vec{\mathbf{E}}}{\partial t^{2}} = \mathbf{0} \qquad \nabla^{2}\vec{\mathbf{B}} - \mu_{0}\varepsilon_{0}\frac{\partial^{2}\vec{\mathbf{B}}}{\partial t^{2}} = \mathbf{0}$$

 $\mathbf{c} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ The radiation is a wave and moves with a speed equal to c
Plane waves $\vec{E} = \vec{E}_0 e^{i\left(\vec{k}\vec{r} - \omega t\right)} \qquad \vec{B} = \vec{B}_0 e^{i\left(\vec{k}\vec{r} - \omega t\right)}$ Real part $\rightarrow \vec{E} = \vec{E}_0 \cos\left(\vec{k}\vec{r} - \omega t\right)$

k is the wavevector; it gives the direction of the propagation

Plane waves

$$\vec{E} = \vec{E}_0 \cos\left(\vec{k}\vec{r} - \omega t\right) \qquad \qquad \vec{B} = \vec{B}_0 \cos\left(\vec{k}\vec{r} - \omega t\right)$$

Dispersion relation

$$\lambda_0 v = \frac{\lambda_0}{T} = \lambda_0 \frac{\omega}{2\pi} = c$$

$$\nabla^{2}\vec{E} - \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0$$

$$-k^{2}\vec{E} + \frac{\omega^{2}}{c^{2}}\vec{E} = 0 \rightarrow k = \frac{\omega}{c} \rightarrow \frac{2\pi}{\lambda_{0}} = \frac{2\pi\nu}{c} \rightarrow \lambda_{0}\nu = c$$

 2π

$$\lambda_0 v = \frac{\lambda_0}{T} = \lambda_0 \frac{\omega}{2\pi} = c$$

$$\left| \vec{\mathbf{k}} \right| = \frac{2\pi}{\lambda_0}$$

$$\vec{\mathbf{k}} = \frac{2\pi}{\lambda_0} \hat{\mathbf{k}} = \frac{\omega}{c} \hat{\mathbf{k}}$$

Plane waves

$$\vec{E} = \vec{E}_0 e^{i\left(\vec{k} \cdot \vec{r} - \omega t\right)} \Rightarrow \vec{E} = \vec{E}_0 e^{i\left(\vec{k} \cdot \vec{r} - \omega t\right)} \Rightarrow$$

$$\vec{E} = \vec{E}_0 \cos \frac{2\pi}{\lambda_0} (x - ct) \Rightarrow \vec{E} = \vec{E}_0 \cos \left(\frac{2\pi x}{\lambda_0} - \omega t\right)$$

$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_0 e^{i(\vec{k}\vec{r} \cdot \omega t)} \qquad \vec{\mathbf{B}} = \vec{\mathbf{B}}_0 e^{i(\vec{k}\vec{r} \cdot \omega t)}$$

Associated to the radiation there is an energy density w equal to:

w(t) =
$$\frac{1}{2} \varepsilon_0 E(t)^2 + \frac{1}{2\mu_0} B(t)^2$$

0

$$w(t) = \frac{1}{2}\varepsilon_0 E(t)^2 + \frac{1}{2\mu_0}B(t)^2 = \varepsilon_0 E(t)^2$$

dx=cdt

$$\overline{w} = \frac{1}{2} \varepsilon_0 E_0^2$$

Intensity I: Mean energy flow per unit time and unit area

$$I = \frac{1}{A} \frac{\overline{w} dV}{dt} = \frac{1}{A} \frac{\overline{w} (Acdt)}{dt} = \overline{w}c = \frac{1}{2} \varepsilon_0 E_0^2 c$$

The intensity I of the beam is: $I = \overline{w}c = c\frac{1}{2}\varepsilon_0 E_0^2$

Plane Wave in matter

$$\nabla^2 \vec{E} - \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_{0} e^{i\vec{k}\vec{r}-\omega t}$$
$$\vec{\mathbf{B}} = \vec{\mathbf{B}}_{0} e^{i\vec{k}\vec{r}-\omega t}$$

$$\vec{\mathbf{k}} = \frac{2\pi}{\lambda}$$

 $\vec{\mathbf{k}}$ is the wavevector

$$\begin{aligned} \mathbf{\varepsilon} &= \mathbf{\varepsilon}_0 \mathbf{\varepsilon}_r \\ \mathbf{\mu} &= \mathbf{\mu}_0 \mathbf{\mu}_r \cong \mathbf{\mu}_0 \end{aligned}$$

$$\mathbf{v} = \frac{1}{\sqrt{\mu \ \varepsilon}} = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}} \cong \left(\frac{c}{\sqrt{\varepsilon_r}} = \frac{c}{n}\right)$$

Plane Wave in matter

$$\nabla^{2}\vec{E} - \mu\epsilon \frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0 \qquad \vec{E} = 0 \qquad$$

$$\vec{E} = \vec{E}_0 e^{i\left(\vec{k}\vec{r} - \omega t\right)}$$
$$\vec{B} = \vec{B}_0 e^{i\left(\vec{k}\vec{r} - \omega t\right)}$$

Dispersion relation:

$$k^{2} - \mu \epsilon \omega^{2} = 0 \implies k^{2} - \frac{n^{2}}{c^{2}} \omega^{2} = 0 \implies \frac{2\pi}{\lambda^{2}} - \frac{\omega^{2}}{v^{2}} = 0$$

$$\lambda 2\pi v = 2\pi c/n$$
 $\lambda = \lambda_0/n$

E.M. Waves in matter

$$n=(\epsilon_r)^{1/2}$$

refraction index

$$\left| \vec{\mathbf{v}} \right| = \frac{1}{\sqrt{\mu_{o}\mu_{r}\epsilon_{o}\epsilon_{r}}} = \frac{c}{\sqrt{\mu_{r}\epsilon_{r}}} = \frac{c}{n}$$

$$\left| \vec{\mathbf{v}} \right| = \frac{\mathbf{c}}{\mathbf{n}} < \mathbf{c}$$

In the matter the light is slower than in the vacuum

In the matter the wavelength is shorter than in the vacuum

$$|\vec{\mathbf{k}}| = \frac{2\pi}{\lambda_0} \times \mathbf{n}$$

Origin of the dielectric function and of the index of refraction (qualitative)

The electric field of the radiation cause a motion of the microscopic charges

Electrons and nuclei moves in opposite directions giving rise to microscopic electric dipoles

Origin of the dielectric function and of the index of refraction (qualitative)

$$\vec{\mathbf{E}} = \frac{\varepsilon_0}{\varepsilon} \vec{\mathbf{E}}_{\text{vac.}}$$

The induced electric dipole and the electric field are not in phase (because of the electron and nuclei mass)

The dielectric function is a complex quantity with a real and an imaginary part $\epsilon = \epsilon_1 + i\epsilon_2 = |\epsilon|e^{i\phi}$

Origin of the dielectric function and of the index of refraction (qualitative)

$$\vec{\mathbf{E}} = \frac{\varepsilon_0}{\varepsilon} \mathbf{E}_{\text{vac.}} = \frac{\varepsilon_0}{|\varepsilon| e^{i\phi}} \vec{\mathbf{E}}_{\text{vac.}} = \frac{\varepsilon_0}{|\varepsilon|} \vec{\mathbf{E}}_{\text{vac.}} e^{-i\phi}$$

Amplitude relation is determined by the modulus (~ real part)
Phase relation

Complex dielectric function

$$\varepsilon = \varepsilon_0 \varepsilon_r = \varepsilon_0 (\varepsilon_1 + i\varepsilon_2)$$

$$n^2 = \varepsilon_r = \varepsilon_1 + i\varepsilon_2$$

n is complex
$$n=n_r+i\beta$$

$$\mathbf{n}_{r} = \left[\frac{\varepsilon_{1} + \left(\varepsilon_{1}^{2} + \varepsilon_{2}^{2}\right)^{\frac{1}{2}}}{2}\right]^{\frac{1}{2}} \cong \sqrt{\varepsilon_{1}}$$

$$\beta = \left[\frac{-\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{\frac{1}{2}}}{2} \right]^{\frac{1}{2}} \cong \frac{1}{2} \frac{\varepsilon_2}{n_r}$$

Complex wavevector

$$\vec{k} = \frac{2\pi}{\lambda} \hat{k} = \frac{2\pi}{\lambda_0} n \hat{k} = \frac{\omega}{c} n \hat{k} \text{ is complex}$$
$$\vec{k} = \vec{k}_r + i\vec{k}_i = (\vec{k}_r + i\vec{k}_i) \hat{k}$$
$$\vec{k}_r = \frac{\omega n_r}{c} \hat{k}$$
$$\vec{k}_r = \frac{\omega \beta}{c} \hat{k}$$
$$\vec{k}_r = \frac{\omega \beta}{c} \hat{k}$$
$$\vec{k}_r = \frac{\omega \beta}{c} \hat{k}$$
Wave-damping: Absorption coefficient

$$\vec{k} = \vec{k}_{r} + i\vec{k}_{i} = \frac{\omega}{c} (n_{r} + i\beta) \hat{k}$$

$$\vec{E} = \vec{E}_{0} e^{i(\vec{k}\vec{r} - \omega t)} = \vec{E}_{0} e^{i(\vec{k}_{r}\vec{r} - \omega t)} e^{-\vec{k}_{i}\vec{r}}$$
Standard plane wave
as in vacuum with
 $\lambda = \lambda_{0}/n$

$$\vec{k}_{i} = \frac{\omega\beta}{c} \hat{k}$$
Amplitude
reduction
$$\vec{k}_{i} = \frac{\omega\beta}{c} \hat{k}$$
Intensity $I \propto E^{2}$
Absorption coefficient μ

$$I(r) = I_{0}e^{-2\vec{k}_{i}\vec{r}} = I_{0}e^{-\mu X}$$

$$\mu = 2k_{i} = \frac{2\omega\beta}{c} \approx \frac{\omega\epsilon_{2}}{2c}$$

Kramers-Kronig Relation

The real and imaginary parts of the dielectric function depend one on the other

$$\varepsilon_{1}(\omega) - 1 = \frac{2}{\pi} \int_{0}^{\infty} \frac{\overline{\omega} \varepsilon_{2}(\overline{\omega})}{\overline{\omega}^{2} - \omega^{2}} d\overline{\omega}$$

$$\varepsilon_{2}(\omega) = \frac{2\omega}{\pi} \int_{0}^{\infty} \frac{\varepsilon_{1}(\overline{\omega}) - 1}{\overline{\omega}^{2} - \omega^{2}} d\overline{\omega}$$

Causality: the dipole moment P(t) at time t is determined only by the values of the electric field at time t'≤ t

Microscopic model

The matter is composed of positive and negative charges

At equilibrium the positive and negative charges do not give rise to any dipole moment

Oscillating negative charge Damped oscillator

$$\frac{d^{2}\vec{r}}{dt^{2}} + \gamma \frac{d\vec{r}}{dt} + \omega_{0}^{2}\vec{r} = \frac{e}{m}E_{0}e^{i\omega t}$$

Induced dipole moment

$$\frac{d^{2}\vec{r}}{dt^{2}} + \gamma \frac{d\vec{r}}{dt} + \omega_{0}^{2}\vec{r} = \frac{e}{m}\vec{E}_{0}e^{i\omega t}$$
In stationary condition

$$\vec{r}(t) = \vec{r}_{0}e^{i\omega t}$$

$$\left(-\omega^{2} + i\gamma\omega + \omega_{0}^{2}\right)\vec{r}_{0}e^{i\omega t} = \frac{e}{m}\vec{E}_{0}e^{i\omega t}$$

$$\vec{r}_{0} = \frac{e\vec{E}_{0}}{m}\frac{1}{\left(-\omega^{2} + i\gamma\omega + \omega_{0}^{2}\right)}$$

$$\vec{p}(t) = \mathbf{Z}e\vec{r}(t) = \frac{\mathbf{Z}e^{2}\vec{E}_{0}}{m}\frac{1}{\left(-\omega^{2} + i\gamma\omega + \omega_{0}^{2}\right)}e^{i\omega t}$$

Dielectric function

N = number of atoms per unit volume

$$\vec{\mathbf{P}} = \boldsymbol{\varepsilon}_{_{0}} \boldsymbol{\chi} \vec{\mathbf{E}}$$
$$\boldsymbol{\varepsilon}_{_{r}} = \mathbf{1} + \boldsymbol{\chi}$$

$$\vec{\mathbf{P}}(\mathbf{t}) = N\vec{\mathbf{p}} = \frac{N\mathbf{Z}\mathbf{e}^{2}\vec{\mathbf{E}}_{0}}{\mathbf{m}}\frac{1}{\left(-\omega^{2} + \mathbf{i}\gamma\omega + \omega_{0}^{2}\right)}\mathbf{e}^{i\omega t}$$

$$\chi = \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m}} \frac{1}{\left(-\omega^{2} + \mathbf{i} \gamma \omega + \omega_{0}^{2}\right)}$$

$$\varepsilon_{r} = \mathbf{1} + \chi = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^{2}}{\varepsilon_{0}\mathbf{m}} \frac{1}{(-\omega^{2} + \mathbf{i}\gamma\omega + \omega_{0}^{2})}$$

Electric field and dielectric function (in simple word)

$$\vec{\mathbf{P}} = \boldsymbol{\varepsilon}_{_{0}} \chi \vec{\mathbf{E}}$$
 $\boldsymbol{\varepsilon}_{_{r}} = 1 + \chi$

$$\varepsilon_{r} = 1 + \chi = 1 + \frac{NZe^{2}}{\varepsilon_{0}m} \frac{1}{\left(-\omega^{2} + i\gamma\omega + \omega_{0}^{2}\right)}$$

$$\vec{\mathbf{E}}_{0} \mathbf{e}^{\mathbf{i}(\vec{k}\vec{r}-\omega t)} \rightarrow \vec{\mathbf{E}}_{\text{tot.}} = \frac{\vec{\mathbf{E}}_{0} \mathbf{e}^{\mathbf{i}(\vec{k}\vec{r}-\omega t)}}{\varepsilon_{r}}$$

Real and imaginary part of the dielectric function

$$\varepsilon_{r} = \mathbf{1} + \chi = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^{2}}{\varepsilon_{0}\mathbf{m}} \frac{1}{\left(-\omega^{2} + \mathbf{i}\gamma\omega + \omega_{0}^{2}\right)}$$

$$\varepsilon_{1} = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^{2}}{\varepsilon_{0}\mathbf{m}} \frac{\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}}{\left(\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}\right)^{2} + \left(\boldsymbol{\gamma}\boldsymbol{\omega}\right)^{2}}$$

$$\varepsilon_{2} = \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m}} \frac{\gamma \omega}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \left(\gamma \omega\right)^{2}}$$

General behavior of the real part of the dielectric function

$$\varepsilon_{1} = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^{2}}{\varepsilon_{0}\mathbf{m}} \frac{\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}}{\left(\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}\right)^{2} + \left(\boldsymbol{\gamma}\boldsymbol{\omega}\right)^{2}}$$

$$\varepsilon_1(\mathbf{0}) = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^2}{\varepsilon_0 \mathbf{m}\omega_0^2} \qquad \varepsilon_1(\omega \gg \omega_0) = \mathbf{1} - \frac{N\mathbf{Z}\mathbf{e}^2}{\varepsilon_0 \mathbf{m}\omega^2}$$

Behavior of the real part above ω_0

Behavior of the real part at high energy

$$\varepsilon_1(\omega \gg \omega_0) = 1 - \frac{N Z e^2}{\varepsilon_0 m \omega^2}$$

$$\varepsilon_1(\omega >> \omega_0) < 1$$

Refraction index at high energy

$$\mathbf{n}_{r} = \sqrt{1 - \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m} \boldsymbol{\omega}^{2}}} \cong 1 - \frac{1}{2} \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m} \boldsymbol{\omega}^{2}} = 1 - \delta$$

$$\delta = \frac{1}{2} \frac{N \mathbb{Z} e^2}{\varepsilon_0 m \omega^2} \cong 10^{-5} - 10^{-6}$$

Use of Total Reflection

$$\theta_{c} = \sqrt{2\delta} \cong \text{few } 10^{-3}$$

•X-ray Mirrors•Surface Diffraction•REFLEXAFS

Total Reflection: evanescent wave

REFLEXAFS: evanescent wave

$$E_{T} = E_{o}Te^{ik_{Tx}x}e^{-kn_{T}z\sqrt{\alpha_{c}^{2}-\alpha_{i}^{2}}}$$

$$\Lambda = penetration length$$

$$\Lambda = \frac{1}{2kn\sqrt{\alpha_{c}^{2}-\alpha_{i}^{2}}} \frac{1}{2kn\alpha_{c}} = 12 \dot{A} (Au)$$

Under total reflection condition the X-ray beam is confined in a layer of few tens of A from the surface Surface sensitivity

Total Reflection: evanescent wave

z=0

Somewhat counterintuitively, the amplitude of the evanescent wave can actually be greater than the incident one.

Behavior of the imaginary part

$$\varepsilon_{2} = \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m}} \frac{\gamma \omega}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \left(\gamma \omega\right)^{2}}$$

3

$${}_{2}(\omega \gg \omega_{0}) = \frac{N \mathbb{Z} e^{2}}{\varepsilon_{0} m} \frac{\gamma}{\omega^{3}} \qquad \qquad \beta = \frac{N \mathbb{Z} e^{2}}{2 \varepsilon_{0} m} \frac{\gamma}{\omega^{3}}$$

Absorption coefficient

$$\mu = 2k_{i} = \frac{2\omega\beta}{c} \approx \frac{\omega\epsilon_{i}}{2c}$$
$$I(r) = I_{0}e^{-2\vec{k}_{i}\vec{r}} = I_{0}e^{-\mu x}$$

Scattering

Electric field generated by an oscillating point electric charge q The charge is oscillating under the action of the electric field of the incoming radiation

$$\mathbf{x} = -\frac{1}{4\pi\varepsilon_{0}} \frac{\mathbf{qr}_{0}\omega^{2}}{\mathbf{c}^{2}} \frac{\mathbf{e}^{i(\bar{k}_{out}\bar{r}-\omega t)}}{|\mathbf{r}|} \sin\theta$$

The electric field is in the plane (OzP)

Scattering by a free electron ($\omega >> \omega_{0}$)

$$\frac{d^{2}\vec{r}_{e}}{dt^{2}} = \frac{e}{m}\vec{E}_{0}e^{-i\omega t}$$
$$\vec{r}_{e} = \vec{r}_{0}e^{-i\omega t}$$
$$\vec{r}_{e}(t) = -\frac{e}{m\omega^{2}}\vec{E}_{0}e^{i\omega t}$$
$$\vec{r}_{e}(t) = -\frac{e}{m\omega^{2}}\vec{E}_{0}e^{i\omega t}$$

Differential cross section

Differential cross section (normalized differential scattered power)

Electron classical radius

$$\frac{d\sigma}{d\Omega} = \left(\frac{1}{4\pi\varepsilon_0}\frac{e^2}{mc^2}\right)^2 \sin^2\theta = r_e^2 \sin^2\theta$$

 r_e is called the electron classical radius=2.818 10⁻¹⁵ m

$$\frac{1}{4\pi\epsilon_{_0}}\frac{e^2}{r_{_e}}=mc^2$$

In Gauss system
$$r_e = \frac{e^2}{mc^2}$$

The plane formed by the direction of the incoming and outcoming radiation is called is scattering angle It is the plane formed by k_{in} and k_{out}

The angle θ_s is called the scattering angle (Sometimes the scattering angle is indicated with 2 θ_s)

Incoming Radiation polarized perpendicular to the Scattering Plane

Incoming radiation polarized perpendicular to the scattering plane π_s $\rightarrow \theta = \pi/2 \rightarrow \sin \theta = 1$

Scattering radiation perpendicular to the scattering plane

$$(\hat{\mathbf{e}}_{in} \bullet \hat{\mathbf{e}}_{out}) = \mathbf{1} = \mathbf{sin}\,\mathbf{\theta}$$

$$\frac{d\sigma}{d\Omega} = \sin^2 \theta \ r_e^2 = r_e^2 = (\hat{e}_{in} \bullet \hat{e}_{out})^2 r_e^2$$

Incoming radiation polarized in the Scattering Plane

Incoming radiation polarized in the scattering plane π_s It is also perpendicular to k_{in}

Scattering radiation is polarized in the scattering plane

$$\theta + \theta_s = \frac{\pi}{2}$$

$$(\hat{\mathbf{e}}_{_{\mathrm{in}}} \bullet \hat{\mathbf{e}}_{_{\mathrm{out}}}) = (\hat{\mathbf{k}}_{_{\mathrm{in}}} \bullet \hat{\mathbf{k}}_{_{\mathrm{out}}}) = \cos \theta_{_{\mathrm{s}}} = \sin \theta$$

$$\frac{d\sigma}{d\Omega} = \left(\hat{e}_{in} \bullet \hat{e}_{out}\right)^2 r_e^2$$

Charge distributions: Scattering Factor

$$dN_{e} = \rho_{e}dV \qquad \vec{r} - \vec{r}_{e} \qquad P \qquad E_{in} = E_{0}e^{i(\vec{k}_{in}\vec{r}-\omegat)}$$

$$E_{\theta} = \frac{1}{4\pi\epsilon_{0}}\frac{e^{2}E_{0}}{mc^{2}}\frac{e^{i(\vec{k}_{out}\vec{r}-\omegat)}}{|r|}(\hat{e}_{in} \cdot \hat{e}_{out})$$

$$dE_{\theta} = \frac{1}{4\pi\epsilon_{0}}\frac{e^{2}E_{0}e^{i\vec{k}_{in}\vec{r}_{e}}}{mc^{2}}\frac{e^{i(\vec{k}_{out}(\vec{r}-\vec{r}_{e})-\omegat)}}{|\vec{r} - \vec{r}_{e}|}(\hat{e}_{in} \cdot \hat{e}_{out})\rho_{e}dV$$

Scattering Factor V

$$\mathbf{E}_{\theta} = \mathbf{E}_{\text{Single}} \mathbf{f}(\mathbf{\vec{q}})$$
$$\mathbf{\vec{q}} = \mathbf{\vec{k}}_{\text{out}} - \mathbf{\vec{k}}_{\text{in}}$$

$$\mathbf{f}(\mathbf{\vec{q}}) = \int e^{-i\mathbf{\vec{q}}\cdot\mathbf{\vec{r}}_e} \rho_e \mathbf{dV}$$

Number of electrons per unit volume

Scattering amplitude ∝ to: Fourier Transform of the charge density (in electron units) For atoms, molecules, crystals ...

$$\frac{d\sigma}{d\Omega} = r_e^2 (\hat{e}_{in} \bullet \hat{e}_{out})^2 |f(\vec{q})|^2$$
 Phase Problem

Overview $\mathbf{E}_{\theta} = \frac{1}{4\pi\epsilon_{0}} \frac{\mathbf{e}^{2}}{\mathbf{mc}^{2}} (\hat{\mathbf{e}}_{in} \bullet \hat{\mathbf{e}}_{out}) \frac{\mathbf{e}^{i\left(\vec{k}_{out}\vec{r}-\omega t\right)}}{|\vec{\mathbf{r}}|} \mathbf{E}_{0} = \mathbf{r}_{e} (\hat{\mathbf{e}}_{in} \bullet \hat{\mathbf{e}}_{out}) \frac{\mathbf{e}^{i\left(\vec{k}_{out}\vec{r}-\omega t\right)}}{|\vec{\mathbf{r}}|} \mathbf{E}_{0}$ $\frac{d\sigma}{d\Omega} = r_e^2 (\hat{e}_{in} \bullet \hat{e}_{out})^2$ $\mathbf{E}_{\theta} = \int d\mathbf{E}_{\theta} = \mathbf{E}_{\text{Single}} \int e^{i(\vec{k}_{\text{out}} - \vec{k}_{\text{in}}) \vec{r}_{e}} \rho_{e} d\mathbf{V} = \mathbf{E}_{\text{Single}} \mathbf{f}(\vec{q})$ $\frac{d\sigma}{d\Omega} = r_e^2 (\hat{e}_{in} \bullet \hat{e}_{out})^2 |f(\vec{q})|^2$

Anomalous correction

Electrons are not free but are bound

$$\frac{d^{2}\vec{r}}{dt^{2}} + \gamma \frac{d\vec{r}}{dt} + \omega_{0}^{2}\vec{r} = \frac{e}{m}E_{0}e^{i\omega t}$$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_{_{0}} \mathbf{e}^{_{\mathbf{i}\omega\mathbf{t}}}$$

$$\vec{\mathbf{r}}_{_{0}} = \left(-\frac{e\vec{\mathbf{E}}_{_{0}}}{m\omega^{^{2}}}\right) \frac{-\omega^{^{2}}}{\left(\omega_{_{0}}^{^{2}}-\omega^{^{2}}\right) - \mathbf{i}\gamma\omega}$$

$$\vec{\mathbf{r}}_{0} = \left(-\frac{e\vec{\mathbf{E}}_{0}}{m\omega^{2}}\right)\left[1-\frac{\omega_{0}^{2}-i\gamma\omega}{(\omega_{0}^{2}-\omega^{2})-i\gamma\omega}\right]$$

Anomalous correction

$$\mathbf{f}_{i} = \mathbf{f}_{i}^{\text{free}} \left[1 - \frac{\omega_{0}^{2} - \mathbf{i}\gamma\omega}{\left(\omega_{0}^{2} - \omega^{2}\right) - \mathbf{i}\gamma\omega} \right]$$

ω<<ω

At low frequency electron do not Contribute to the scattering

$$\omega >> \omega_0$$
 $\mathbf{f}_i = \mathbf{f}_i^{\text{free}}$

At high frequency the electron behaves like free electrons

Anomalous correction for atoms

$$\mathbf{f} = \mathbf{f}^{\text{free}} + \Delta \mathbf{f} = \sum_{j} \mathbf{f}_{j}^{\text{free}} - \sum_{j} \mathbf{f}_{j}^{\text{free}} \frac{\boldsymbol{\omega}_{0j}^{2} - \mathbf{i}\gamma\omega}{\left(\boldsymbol{\omega}_{0j}^{2} - \boldsymbol{\omega}^{2}\right) - \mathbf{i}\gamma\omega}$$

Anomalous correction for atoms: f' and f'' of Ge

Anomalous correction for Au

$$\mathbf{f} = \mathbf{f}^{\text{free}} + \Delta \mathbf{f} = \sum_{j} \mathbf{f}_{j}^{\text{free}} + \sum_{j} \mathbf{f}_{j}^{\text{free}} \frac{\boldsymbol{\omega}_{0j}^{2} - \mathbf{i}\gamma\boldsymbol{\omega}}{\left(\boldsymbol{\omega}_{0j}^{2} - \boldsymbol{\omega}^{2}\right) - \mathbf{i}\gamma\boldsymbol{\omega}}$$

Gold Z=

KK & Optical theorem

$$\mathbf{f}'' = \frac{\mathbf{mc}^{2}}{2\mathbf{Ne}^{2}\lambda} \boldsymbol{\mu} \propto \boldsymbol{\mu}$$

$$\mathbf{f}' = \frac{2}{\pi} \int_{0}^{\infty} \overline{\omega} \mathbf{f}''(\overline{\omega}) d\overline{\omega} + \frac{5E_{tot}}{3mc^2}$$

$$\mathbf{f}'' = -\frac{2\omega}{\pi}\int_{0}^{\infty}\frac{\mathbf{f'}(\overline{\omega})}{\omega^{2}-\overline{\omega}^{2}}\mathbf{d}\overline{\omega}$$
Anomalous scattering to solve the phase problem

$$\begin{split} & E_{sc.} \propto E_{0} e^{i\vec{k}_{in}\vec{r}_{A}} f_{A} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{A})} + E_{0} e^{i\vec{k}_{in}\vec{r}_{B}} f_{B} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{B})} \\ & \propto E_{0} e^{i\vec{k}_{in}\vec{r}_{A}} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{A})} (f_{A} + f_{B} e^{i\vec{k}_{in}(\vec{r}_{B}-\vec{r}_{A})} e^{i\vec{k}_{out}(\vec{r}_{A}-\vec{r}_{B})}) \\ & E_{0} e^{i\vec{k}_{in}\vec{r}_{A}} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{A})} (f_{A} + f_{B} e^{i\vec{q}(\vec{r}_{A}-\vec{r}_{B})}) \end{split}$$

$$\vec{\mathbf{q}} = \vec{\mathbf{k}}_{\text{out}} - \vec{\mathbf{k}}_{\text{in}}$$

$$\begin{aligned} & \text{Friedel law} \\ & \text{When } \mathbf{f}_{A} \text{ and } \mathbf{f}_{B} \text{ are complex } \neq \mathbf{I}(\mathbf{q}) \neq \mathbf{I}(-\mathbf{q}) \\ & |(\mathbf{f}_{A} + \mathbf{f}_{B} \mathbf{e}^{i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})})|^{2} = (\mathbf{f}_{A} + \mathbf{f}_{B} \mathbf{e}^{i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})})(\mathbf{f}_{A}^{*} + \mathbf{f}_{B}^{*} \mathbf{e}^{-i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})}) \\ & |(\mathbf{f}_{A} + \mathbf{f}_{B} \mathbf{e}^{-i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})})|^{2} = (\mathbf{f}_{A} + \mathbf{f}_{B} \mathbf{e}^{-i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})})(\mathbf{f}_{A}^{*} + \mathbf{f}_{B}^{*} \mathbf{e}^{+i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})}) \\ & \mathbf{f}_{A} = |\mathbf{f}_{A}| \mathbf{e}^{i\Phi_{A}} \qquad \mathbf{f}_{B} = |\mathbf{f}_{B}| \mathbf{e}^{i\Phi_{B}} \\ & \mathbf{I}(\bar{\mathbf{q}}) - \mathbf{I}(-\bar{\mathbf{q}}) \propto \text{Re}\left\{\mathbf{e}^{i\bar{\mathbf{q}}(\bar{\mathbf{r}}_{A} - \bar{\mathbf{r}}_{B})\right\} \text{Re}\left\{\mathbf{e}^{i(\Phi_{A} - \Phi_{B})}\right\} \end{aligned}$$

$$E = -\vec{\mu}\vec{H}$$
$$\vec{F} = \operatorname{grad}\left(\vec{\mu}\vec{H}\right)$$

Is due to the variation of the energy for the non uniformity of the magnetic field of the radiation

magnetic field of the radiation

Strength of Magnetic Interactions

$$\frac{\left|\vec{F}_{M2}\right|}{\left|\vec{F}_{T}\right|} = \frac{\left|\operatorname{grad}\left(\vec{\mu}\cdot\vec{H}\right)\right|}{\left|eE\right|} = \frac{\left|\operatorname{grad}\left(\vec{\mu}\cdot\vec{H}_{0}e^{i\vec{k}\cdot\vec{r}}\right)\right|}{eE_{0}} = \frac{k}{2} \frac{1}{\lambda} \left(\frac{e\hbar}{2m}\right) \frac{1}{2} \frac{H_{0}}{E_{0}} \approx \frac{\pi\hbar}{mc\lambda} = \frac{\lambda_{\text{compton}}}{\lambda} \approx 10^{-2}$$

$$\frac{Only \text{ magnetic}}{Electrons \text{ are active}} \Longrightarrow \frac{I_{mag.}}{I_{T.}} \approx 10^{-4} \left(\frac{Z_{mag.}}{Z}\right)^{2} \approx 10^{-6} \div 10^{-7}$$

de Bergevin e Brunel on NiO(1972)

•NiO e' un cristallo cubico antiferromagnetico (T_{Neel}=250 °C)
•Gli ioni Ni⁺⁺ hanno due soli spin accoppiati
•Gli spin sono allineati magneticamente nel piano (111)
•Ed antiferromagneticamente tra i piani (111)

Figure 10: Panel a: Superlattice magnetic reflection (3/2, 3/2, 3/2) of NiO measured in magnetic phase (25°) , and in the paramagnetic phase. The disappearance of the peak shows its magnetic origin. Panel b: The magnetic reflection (3/2, 3/2, 3/2) of NiO measured today at a third generation synchrotron radiation facility.

Matter ←Interaction → Radiation II

Semi-Classical approach

Radiation: Electromagnetic waves described by Maxwell equations

Matter:

Quantum system obeying Schrodinger equation (oscillators,...)

Semiclassical approach: the radiation

One vector is enough to describe e.m. radiation

$$\vec{\mathbf{E}} = -\frac{1}{c} \frac{\partial \vec{\mathbf{A}}}{\partial t} - \mathbf{gradV}$$
$$\vec{\mathbf{B}} = \mathbf{rot} \vec{\mathbf{A}}$$

$$\nabla^{2} \mathbf{V} = \rho$$
$$-\nabla^{2} \vec{\mathbf{A}} = \frac{\mu}{c} \vec{\mathbf{j}}$$

$$\nabla^{2}\mathbf{V} + \frac{1}{\mathbf{c}^{2}}\frac{\partial^{2}\mathbf{V}}{\partial \mathbf{t}^{2}} = \rho$$
$$-\nabla^{2}\vec{\mathbf{A}} + \frac{1}{\mathbf{c}^{2}}\frac{\partial^{2}\vec{\mathbf{A}}}{\partial \mathbf{t}^{2}} = \frac{\mu}{\mathbf{c}}\vec{\mathbf{j}}$$

$$\nabla^{2} \vec{\mathbf{A}} - \frac{1}{\mathbf{c}^{2}} \frac{\partial^{2} \vec{\mathbf{A}}}{\partial \mathbf{t}^{2}} = \mathbf{0}$$

Semiclassical approach: the radiation

$$\vec{\mathbf{A}} = \vec{\mathbf{A}}_{\vec{k}} \mathbf{e}^{i(\vec{k}\vec{r}-\omega t)}$$

$$\vec{\mathbf{E}} = -\frac{1}{c} \frac{\partial \vec{\mathbf{A}}}{\partial t} - \text{gradV}$$
$$\vec{\mathbf{B}} = \text{rot} \vec{\mathbf{A}}$$

$$\vec{\mathbf{E}} = -\vec{\mathbf{A}}_{k} \frac{\mathbf{i}\omega}{\mathbf{c}} \mathbf{e}^{i(\vec{k}\vec{r}-\omega t)}$$
$$\vec{\mathbf{B}} = \vec{\mathbf{k}} \times \vec{\mathbf{A}}_{k} \mathbf{e}^{i(\vec{k}\vec{r}-\omega t)}$$

Semiclassical approach: the matter

Matter: Quantum system

The system is characterized by its Hamiltonian H_0 and by its eigenfunctions ψ_n and energy eigenvalues E_n obtained by solving the Schrodinger equation

$$\mathbf{\hat{H}}_{0}\boldsymbol{\psi}_{n}=\boldsymbol{E}_{n}\boldsymbol{\psi}_{n}$$

$$\left(\frac{\mathbf{\hat{p}}^{2}}{2\mathbf{m}} + \mathbf{V}\right)\psi_{n} = E_{n}\psi_{n}$$

Interaction Hamiltonian

$$\hat{\mathbf{p}} \rightarrow \left(\hat{\mathbf{p}} - \frac{\mathbf{e}}{\mathbf{c}} \vec{\mathbf{A}} \right)$$

$$\hat{\mathbf{H}} = \frac{1}{2m} \left(\hat{\mathbf{p}} - \frac{\mathbf{e}}{\mathbf{c}} \vec{\mathbf{A}} \right)^2 + \mathbf{V} = \\ \left(\frac{\hat{\mathbf{p}}^2}{2m} - \frac{\mathbf{e}}{mc} \vec{\mathbf{A}} \hat{\mathbf{p}} + \frac{\mathbf{e}^2}{2mc^2} \mathbf{A}^2 \right) + \mathbf{V} \\ \hat{\mathbf{H}}_0 - \frac{\mathbf{e}}{mc} \vec{\mathbf{A}} \hat{\mathbf{p}} + \frac{\mathbf{e}^2}{2mc^2} \mathbf{A}^2 = \hat{\mathbf{H}}_0 + \hat{\mathbf{H}}_{int}$$

Perturbation Hamiltonian

Fermi Golden rule

The perturbation due to the e.m. field induce transitions from the ground state ψ_i to excited states ψ_f with a probability per unit time given by

$$\Gamma_{if} = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \delta(\mathbf{E}_f - \mathbf{E}_i) = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \mathbf{g}(\mathbf{E}_f)$$

$$\mathbf{M}_{if} = \left\langle \boldsymbol{\psi}_{f} \left| \widehat{\mathbf{H}}_{int.} \right| \boldsymbol{\psi}_{i} \right\rangle + \sum_{n} \frac{\left\langle \boldsymbol{\psi}_{f} \left| \widehat{\mathbf{H}}_{int.} \right| \boldsymbol{\psi}_{n} \right\rangle \left\langle \boldsymbol{\psi}_{n} \left| \widehat{\mathbf{H}}_{int.} \right| \boldsymbol{\psi}_{i} \right\rangle}{\mathbf{E}_{i} - \mathbf{E}_{n} \pm \hbar \omega + i\epsilon}$$

Absorption

$$\hat{\mathbf{H}}_{int} = -\frac{\mathbf{e}}{\mathbf{mc}} \vec{\mathbf{A}} \hat{\mathbf{p}} + \frac{\mathbf{e}^2}{\mathbf{mc}^2} \vec{\mathbf{A}}^2 + \frac{\mathbf{A}^2}{\mathbf{mc}^2} \vec{\mathbf{A}}^2 + \frac{\mathbf{A}^2}{\hbar} |\mathbf{M}_{if}|^2 \mathbf{g}(\mathbf{E}_f)$$

$$\mathbf{M}_{_{\mathrm{if}}} = \left\langle \boldsymbol{\psi}_{_{\mathrm{f}}} \middle| \widehat{\mathbf{H}}_{_{\mathrm{int.}}} \middle| \boldsymbol{\psi}_{_{\mathrm{i}}} \right\rangle + \sum_{_{n}} \frac{\left\langle \boldsymbol{\psi}_{_{\mathrm{f}}} \middle| \widehat{\mathbf{H}}_{_{\underline{\mathrm{int.}}}} \middle| \boldsymbol{\psi}_{_{n}} \right\rangle \left\langle \boldsymbol{\psi}_{_{n}} \middle| \widehat{\mathbf{H}}_{_{\underline{\mathrm{int.}}}} \middle| \boldsymbol{\psi}_{_{\mathrm{i}}} \right\rangle}{\dots E_{_{\mathrm{i}}}^{*} - E_{_{n}}^{*} \pm \hbar \boldsymbol{\omega} + i \epsilon...}$$

$$\mathbf{w}_{if} = \frac{2\pi}{\hbar} \left(\frac{\mathbf{e} \ \mathbf{A}_{k}}{\mathbf{m} \ \mathbf{c}} \right)^{2} \left| \left\langle \psi_{f} \left| e^{i\vec{k}\vec{r}} \left(\hat{\mathbf{e}}_{k} \bullet \hat{\mathbf{p}} \right) \right| \psi_{i} \right\rangle \right|^{2} \delta(\mathbf{E}_{f} - \mathbf{E}_{i} - \hbar\omega)$$

$$\mathbf{w}_{if} = \frac{2\pi}{\hbar} \left(\frac{\mathbf{e} \mathbf{E}_{k}}{\mathbf{m} \boldsymbol{\omega}}\right)^{2} \left| \left\langle \boldsymbol{\psi}_{f} \left| \mathbf{e}^{i\vec{k}\vec{r}} \left(\hat{\mathbf{e}}_{k} \bullet \hat{\mathbf{p}} \right) \right| \boldsymbol{\psi}_{i} \right\rangle \right|^{2} \delta(\mathbf{E}_{f} - \mathbf{E}_{i} - \hbar \boldsymbol{\omega})$$

Absorption Coefficient

$$\mathbf{I} = \mathbf{I}_0 \mathbf{e}^{-\mu \mathbf{x}} \Longrightarrow \mu = -\frac{1}{\mathbf{I}} \frac{\mathbf{d}\mathbf{I}}{\mathbf{d}\mathbf{x}}$$

$$=\frac{1}{2\pi c}\omega^2 A_0^2 \qquad dI = \sum w_{fi}\hbar\omega Ndx$$

Ι

$$\mu = \frac{4\pi^2 \hbar \alpha}{m^2 \omega} \sum_{f} \left| \left\langle \psi_{f} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{k} \bullet \hat{p} \right) \right| \psi_{i} \right\rangle \right|^2 \delta(E_{f} - E_{i} - \hbar \omega)$$

$$\alpha = \frac{e^2}{\hbar c} \cong \frac{1}{137}$$

Absorption Coefficient: dipole approximation

$$\mu = \frac{4\pi^2 \hbar \alpha}{m^2 \omega} \sum_{f} \left| \left\langle \Psi_{f} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{k} \bullet \hat{p} \right) \right| \Psi_{i} \right\rangle \right|^2 \delta(E_{f} - E_{i} - \hbar \omega)$$

$$e^{i\vec{k}\vec{r}}\cong 1+\vec{k}\vec{r}$$

$$\mu = \frac{4\pi^2 \hbar \alpha}{m^2 \omega} \sum_{f} \left| \left\langle \psi_{f} \left| \left(\mathbf{\hat{e}}_{k} \bullet \mathbf{\hat{p}} \right) \right| \psi_{i} \right\rangle \right|^2 \delta(\mathbf{E}_{f} - \mathbf{E}_{i} - \hbar \omega)$$

Optical transitions: $\lambda \approx 5000 \text{ \AA} \rightarrow \text{always valid}$

In the case of X-ray, the wavelength is few Å, i.e. of the same order as the extensions of the atomic orbitals

In general the core states **Spatial** extension reduces as 1/Z with increasing the Z number of the atom with respect to the hydrogen orbitals

the energy of the absorption edges increases as Z^2 and the wavelength of the radiation needed to excite a core level decreases as $1/Z^2$

Therefore for high Z elements, deviations from the dipole approximations must be expected and must be taken into account.

Absorption Coefficient: electric dipole

$$\langle \boldsymbol{\psi}_{f} \left| \hat{\boldsymbol{p}} \right| \boldsymbol{\psi}_{i} \rangle = \langle \boldsymbol{\psi}_{f} \left| \boldsymbol{m} \, \hat{\boldsymbol{r}} \right| \boldsymbol{\psi}_{i} \rangle = \frac{im}{\hbar} \langle \boldsymbol{\psi}_{f} \left| \left[\hat{\boldsymbol{H}} \, \hat{\boldsymbol{r}} - \hat{\boldsymbol{r}} \, \hat{\boldsymbol{H}} \right] \right] \boldsymbol{\psi}_{i} \rangle = \frac{im(\boldsymbol{E}_{f} - \boldsymbol{E}_{i})}{\hbar} \langle \boldsymbol{\psi}_{f} \left| \hat{\boldsymbol{r}} \right| \boldsymbol{\psi}_{i} \rangle = im \omega \langle \boldsymbol{\psi}_{f} \left| \hat{\boldsymbol{r}} \right| \boldsymbol{\psi}_{i} \rangle$$

$$\mu = 4\pi^2 \hbar \omega \alpha \sum_{f} \left| \left\langle \psi_{f} \left| \left(\hat{\mathbf{e}}_{k} \bullet \hat{\mathbf{r}} \right) \right| \psi_{i} \right\rangle \right|^2 \delta(\mathbf{E}_{f} - \mathbf{E}_{i} - \hbar \omega)$$

$$\mu = 4\pi^2 \hbar \omega \alpha \left\| \left\langle \psi_{\mathbf{f}} \left| \left(\mathbf{\hat{e}}_{\mathbf{k}} \bullet \mathbf{\hat{r}} \right) \right| \psi_{\mathbf{i}} \right\rangle \right\|^2 D(\mathbf{E}_{\mathbf{f}})$$

$$D(E_{f}) = Density of states$$

Scattering

The full elastic and inelastic scattering cross section

In particular: o the anomalous scattering o the resonant scattering o additional scattering arising from the magnetic interaction between the electromagnetic field and the electrons

Full quantum approach is needed, in which:

• the matter is treated as a quantum system

• the electromagnetic field as a ensamble of photons

The electromagnetic field and its quantum states

$$\mathbf{A} = \sum_{\vec{k},\lambda} \mathbf{\hat{e}}_{\vec{k},\lambda} \sqrt{\frac{2 \pi \hbar \mathbf{e}^2}{\mathbf{L}^3 \boldsymbol{\omega}_k}} \left(\mathbf{\hat{a}}_{\vec{k},\lambda} \mathbf{e}^{i\vec{k}\vec{r}} + \mathbf{\hat{a}}_{\vec{k},\lambda}^+ \mathbf{e}^{-i\vec{k}\vec{r}} \right)$$

$$\left| \mathbf{n}_{_{\vec{k},\lambda}},...,\mathbf{n}_{_{\vec{k}',\lambda,}}
ight
angle = \left\langle \mathbf{m}_{_{\vec{k},\lambda}},...,\mathbf{m}_{_{\vec{k}',\lambda,}} \left| \mathbf{\hat{O}} \right| \mathbf{n}_{_{\vec{k},\lambda}},...,\mathbf{n}_{_{\vec{k}',\lambda,}}
ight
angle$$

$$\left\langle \mathbf{n}_{\vec{k},\lambda} + \mathbf{1},\ldots,\mathbf{n}_{\vec{k}',\lambda}, \left| \mathbf{\hat{a}}_{\mathbf{k},\lambda}^{+} \right| \mathbf{n}_{\vec{k},\lambda},\ldots,\mathbf{n}_{\vec{k}',\lambda} \right\rangle \neq \mathbf{0}$$

$$\left\langle n_{\vec{k},\lambda} - 1,...,n_{\vec{k}',\lambda} \right| \hat{a}_{k,\lambda} \left| n_{\vec{k},\lambda},...,n_{\vec{k}',\lambda} \right\rangle \neq 0$$

Interactions in quantum approach

$$\hat{\mathbf{H}}_{1} = -\frac{\mathbf{e}}{\mathbf{mc}}\mathbf{A} \bullet \hat{\mathbf{p}} = -\frac{\mathbf{e}}{\mathbf{mc}}\sum_{\vec{k},\lambda} \hat{\mathbf{e}}_{\vec{k},\lambda} \sqrt{\frac{2\pi\hbar c^{2}}{L^{3}\omega_{k}}} \left(\hat{\mathbf{a}}_{\vec{k},\lambda} \mathbf{e}^{i\vec{k}\vec{r}} + \hat{\mathbf{a}}_{\vec{k},\lambda}^{+} \mathbf{e}^{-i\vec{k}\vec{r}} \right) \bullet \hat{\mathbf{p}}$$

$$\hat{\mathbf{H}}_{2} = \frac{\mathbf{e}^{2}}{2\mathbf{mc}^{2}} \mathbf{A}^{2} = \frac{\mathbf{e}^{2}}{2\mathbf{mc}^{2}} \sum_{\vec{k},\lambda;\vec{k}'\lambda'} \sqrt{\frac{2\pi\hbar c^{2}}{\mathbf{L}^{3}\boldsymbol{\omega}_{k}}} \sqrt{\frac{2\pi\hbar c^{2}}{\mathbf{L}^{3}\boldsymbol{\omega}_{k'}}} \hat{\mathbf{e}}_{\vec{k},\lambda} \cdot \hat{\mathbf{e}}_{\vec{k}',\lambda''}$$

$$\left(\hat{\mathbf{a}}_{\vec{k},\lambda} \hat{\mathbf{a}}_{\vec{k}',\lambda'} \mathbf{e}^{i(\vec{k}+\vec{k}')\vec{r}} + \hat{\mathbf{a}}_{\vec{k},\lambda}^{+} \hat{\mathbf{a}}_{\vec{k}',\lambda'} \mathbf{e}^{-i(\vec{k}+\vec{k}')\vec{r}} + \hat{\mathbf{a}}_{\vec{k},\lambda} \hat{\mathbf{a}}_{\vec{k}',\lambda'}^{+} \mathbf{e}^{i(\vec{k}-\vec{k}')\vec{r}} + \hat{\mathbf{a}}_{\vec{k},\lambda}^{+} \hat{\mathbf{a}}_{\vec{k},\lambda'}^{+} \mathbf{e}^{i(\vec{k}-\vec{k}')\vec{r}} + \hat{\mathbf{a}}_{\vec{k},\lambda}^{+} \hat{\mathbf{a}}_{\vec{k}',\lambda'}^{+} \mathbf{e}^{i(\vec{k}-\vec{k}')\vec{r}} + \hat{\mathbf{a}}_{\vec{k},\lambda}^{+} \hat{\mathbf{a}}_{\vec{k}',\lambda'}^{+} \mathbf{e}^{i(\vec{k}-\vec{k}')\vec{r}} \right)$$

Fermi Golden Rule

The perturbation induces transitions between initial and Final states with a propability w_{if}

$$\Gamma_{if} = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \,\delta(\mathbf{E}_f - \mathbf{E}_i) = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \,\mathbf{g}(\mathbf{E}_f)$$

$$\mathbf{M}_{if} = \langle \mathbf{f} | \widehat{\mathbf{H}}_{int.} | \mathbf{i} \rangle + \sum_{n} \frac{\langle \mathbf{f} | \widehat{\mathbf{H}}_{int.} | \mathbf{n} \rangle \langle \mathbf{n} | \widehat{\mathbf{H}}_{int.} | \mathbf{i} \rangle}{\mathbf{E}_{i} - \mathbf{E}_{n} + \mathbf{i} \varepsilon}$$

$$|\mathbf{m}\rangle = |\psi\rangle_{el.} |\mathbf{n}_1\mathbf{n}_2...,\mathbf{n}_{\vec{k}}...\rangle_{photons}$$

Scattering - I

Scattering involves two photons: one is removed from the initial state k_i The second is created in the final state k_f

$$\begin{aligned} |\mathbf{i}\rangle &= |\psi_{\mathbf{i}}\rangle_{\text{el.}} |..., \mathbf{n}_{\vec{k} \text{ in}} ..., \mathbf{0}_{\vec{k} \text{ out}} ,...\rangle_{\text{fotoni}} \\ |\mathbf{f}\rangle &= |\psi_{\mathbf{f}}\rangle_{\text{el.}} |..., \mathbf{n}_{\vec{k} \text{ in}} - 1, ..., \mathbf{1}_{\vec{k} \text{ out}} ,...\rangle_{\text{fotoni}} \end{aligned}$$

Such transitions are due to:
1. terms in A² in the first order (Thompson and Compton scattering)
2. terms in A•p in the second order (Anomalous and resonant scattering)

Elastic and inelastic scattering

I order perturbation theory for the term $\sim A^2$

$$\begin{aligned} |\mathbf{i}\rangle &= |\psi_{i}\rangle_{el.} |..., n_{\vec{k} in} ..., 0_{\vec{k} out} ,...\rangle_{photons} \\ |\mathbf{f}\rangle &= |\psi_{f}\rangle_{el.} |..., n_{\vec{k} in} -1, ..., 1_{\vec{k} out} ,...\rangle_{photons} \end{aligned}$$

Scattering - III

$$\begin{split} \mathbf{M}_{i\mathbf{f}} = & \left(\frac{\mathbf{e}^{2}}{2\mathbf{m}\mathbf{c}^{2}}\right) \sqrt{\left(\frac{2\pi\hbar\mathbf{c}^{2}}{\mathbf{V}\boldsymbol{\omega}_{\mathbf{k}_{in}}}\right)} \sqrt{\left(\frac{2\pi\hbar\mathbf{c}^{2}}{\mathbf{V}\boldsymbol{\omega}_{\mathbf{k}_{out}}}\right)} \\ & \left\{ \sum_{\vec{k},\lambda} \sum_{\vec{k},\lambda} \left\langle \mathbf{f} \left| \left(\hat{\mathbf{e}}_{\vec{k},\lambda} \bullet \hat{\mathbf{e}}_{\vec{k},\lambda\lambda}\right) \mathbf{e}^{i\left(\vec{k}_{i}-\vec{k}_{o}\right)\vec{r}} \hat{\mathbf{a}}_{\vec{k},\lambda} \hat{\mathbf{a}}_{\vec{k},\lambda\lambda}^{+} + \left(\hat{\mathbf{e}}_{\vec{k},\lambda} \bullet \hat{\mathbf{e}}_{\vec{k},\lambda\lambda}\right) \mathbf{e}^{i\left(-\vec{k}_{i}+\vec{k}_{o}\right)\vec{r}} \hat{\mathbf{a}}_{\vec{k},\lambda\lambda}^{+} \mathbf{i} \right\rangle \right\} \end{split}$$

$$\begin{split} \mathbf{M}_{if} &= \left(\frac{e^{2}}{2mc^{2}}\right) \sqrt{\left(\frac{2\pi\hbar c^{2}}{V\omega_{k_{u}}}\right)} \sqrt{\left(\frac{2\pi\hbar c^{2}}{V\omega_{k_{u}}}\right)} \mathbf{r_{0}} = e^{2}/mc^{2} = 2.8179 \ 10^{-13} \ cm \\ \left\{ \left\langle f \left| \left(\hat{\mathbf{e}}_{\bar{\mathbf{k}},\lambda} \cdot \hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \right) e^{i\left(\bar{\mathbf{k}}_{u} - \bar{\mathbf{k}}_{u} \right) \bar{\mathbf{r}}} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} + \left(\hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \cdot \hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \right) e^{i\left(- \bar{\mathbf{k}}_{uu} + \bar{\mathbf{k}}_{u} \right) \bar{\mathbf{r}}} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} + \left(\hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \cdot \hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \right) e^{i\left(- \bar{\mathbf{k}}_{uu} + \bar{\mathbf{k}}_{u} \right) \bar{\mathbf{r}}} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} + \left(\hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \cdot \hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda} \right) e^{i\left(- \bar{\mathbf{k}}_{uu} + \bar{\mathbf{k}}_{u} \right) \bar{\mathbf{r}}} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} \hat{\mathbf{a}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} | \mathbf{i} \right\rangle \right\} = \\ &= \left(\frac{e^{2}}{2mc^{2}} \right) \sqrt{\left(\frac{2\pi\hbar c^{2}}{V\omega_{k_{u}}} \right)} \sqrt{\left(\frac{2\pi\hbar c^{2}}{V\omega_{k_{u}}} \right)} \left(\hat{\mathbf{e}}_{\bar{\mathbf{k}},\lambda} \cdot \hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} \right) \sqrt{n_{\bar{\mathbf{k}}_{u}}^{-}} \left\langle \psi_{f} \left| 2e^{-i\tilde{\mathbf{q}}\bar{\mathbf{r}}} \right| \psi_{i} \right\rangle} \\ &= r_{0} \left(\frac{2\pi\hbar c^{2}}{V} \right) \sqrt{\frac{1}{\omega_{k_{u}}\omega_{k_{u}}}} \left(\hat{\mathbf{e}}_{\bar{\mathbf{k}},\lambda} \cdot \hat{\mathbf{e}}_{\bar{\mathbf{k}}_{u},\lambda\lambda}^{+} \right) \sqrt{n_{\bar{\mathbf{k}}_{u}}^{-}} \left\langle \psi_{f} \left| e^{-i\tilde{\mathbf{q}}\bar{\mathbf{r}}} \right| \psi_{i} \right\rangle \end{aligned}$$

Scattering - IV

Cross section
$$\rightarrow$$

$$\frac{d^{2}\sigma}{d\Omega dE_{k}} = \frac{\sum_{f} \Gamma_{if}}{n_{\vec{k}_{in}} c}$$
Pensity of states
$$g(E_{k}) = \frac{dN}{dE_{k}} = \frac{V}{(2\pi)^{3}} \frac{\omega_{\vec{k}_{out}}}{\hbar c^{3}} d\Omega$$

$$\mathbf{w}_{if} = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \mathbf{g}(\mathbf{E}_{f}) = \mathbf{r}_0^2 \left(\frac{\mathbf{c}}{\mathbf{V}}\right) \mathbf{n}_{\vec{k}_{in}} \frac{\mathbf{\omega}_{\mathbf{k}_{out}}}{\mathbf{\omega}_{\mathbf{k}_{in}}} \left(\mathbf{\hat{e}}_{\vec{k}_{i},\lambda} \bullet \mathbf{\hat{e}}_{\vec{k}_{out},\lambda\lambda}\right)^2 \left| \langle \mathbf{\psi}_i \left| \mathbf{e}^{-i\mathbf{q}\mathbf{r}} \right| \mathbf{\psi}_f \right|^2$$

$$\frac{d^{2}\sigma}{dEd\Omega} = \Sigma_{f} r_{0}^{2} \left(\hat{e}_{\vec{k}_{i},\lambda} \bullet \hat{e}_{\vec{k}_{f},\lambda'} \right)^{2} \frac{\omega_{k_{out}}}{\omega_{k_{in}}} \left| \left\langle \psi_{i} \left| e^{-i\vec{q}\vec{r}} \right| \psi_{f} \right\rangle \right|^{2}$$

Scattering Cross Section (non relativistic)

$$\frac{d^{2}\sigma}{d\Omega dE_{k}} = \sum_{f} r_{0}^{2} \left(\mathbf{\hat{e}}_{\vec{k}_{i},\lambda} \bullet \mathbf{\hat{e}}_{\vec{k}_{out},\lambda\lambda} \right)^{2} \frac{\omega_{k_{out}}}{\omega_{k_{in}}} \sum_{f} \left| \left\langle \psi_{i} \left| e^{-i\vec{q}\vec{r}} \right| \psi_{f} \right\rangle \right|^{2}$$

Elastic scattering

$$\frac{d^{2}\sigma}{d\Omega dE_{k}} = \sum_{f} r_{0}^{2} \left(\hat{e}_{\vec{k}_{i},\lambda} \bullet \hat{e}_{\vec{k}_{out},\lambda'} \right)^{2} \frac{\omega_{k_{out}}}{\omega_{k_{in}}} \sum_{f} \left| \langle \psi_{i} \left| e^{-i\vec{q}\vec{r}} \right| \psi_{f} \rangle \right|^{2}$$

Elastic scattering
$$\rightarrow \omega_{k'} = \omega_k$$

Final electronic state equal to their initial one

$$\frac{d\sigma}{d\Omega} = r_0^2 \left(\mathbf{\hat{e}}_{\vec{k}_i,\lambda} \bullet \mathbf{\hat{e}}_{\vec{k}_{out},\lambda'} \right)^2 \left| \left\langle \psi_i \left| e^{-i\vec{q}\vec{r}} \right| \psi_i \right\rangle \right|^2$$

Inelastic Scattering at very high energy

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{in.}} = r_e^2 \left(\hat{e}_{in} \bullet \hat{e}_{out}\right)^2 \sum_{m \neq n} \left|\left\langle \psi_m \left| e^{i\vec{q}\vec{r}} \right| \psi_n \right\rangle\right|^2 \left(\frac{\omega}{\omega_0}\right)$$

$$\begin{split} \sum_{m \,\# n} \left| \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle \right|^{2} &= \sum_{m \,\# n} \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left| \psi_{m} \right\rangle \right\rangle \left\langle \psi_{m} \left| e^{-i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle \right\rangle = \\ \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left(\sum_{m \,\# n} \left| \psi_{m} \right\rangle \right\rangle \left\langle \psi_{m} \left| \right) \right|^{2} e^{-i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle = 1 - \left| \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle \right|^{2} = \\ 1 - \left| f(\vec{q}) \right|^{2} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{in.}} = r_e^2 \left(\hat{e}_{\text{in}} \bullet \hat{e}_{\text{out}}\right)^2 \left(1 - \left|f(\vec{q})\right|^2\right)$$

Inelastic Scattering at very high energy

$$\left(\frac{d\sigma}{d\Omega}\right)_{in} \cong \mathbf{r}_{e}^{2}\left(\mathbf{\hat{e}}_{in} \bullet \mathbf{\hat{e}}_{out}\right)^{2}\left(\mathbf{1} - \left|\mathbf{f}\left(\mathbf{\vec{q}}\right)\right|^{2}\right)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{el.} + \left(\frac{d\sigma}{d\Omega}\right)_{in.} \cong \mathbf{r}_{e}^{2} \left(\mathbf{\hat{e}}_{in} \bullet \mathbf{\hat{e}}_{out}\right)^{2}$$

The sum of the elastic and inelastic cross sections is equal to the Classical cross section of a free electron

$$\begin{split} & \hat{\mathbf{H}}_{1} = -\frac{e}{mc} \mathbf{A} \bullet \hat{\mathbf{p}} = -\frac{e}{mc} \sum_{\mathbf{k}, \lambda} \hat{\mathbf{e}}_{\mathbf{k}, \lambda} \sqrt{\frac{2\pi\hbar c^{2}}{V\omega_{\mathbf{k}}}} \left(\hat{\mathbf{a}}_{\mathbf{k}, \lambda} e^{i\mathbf{k}\cdot\mathbf{r}} + \hat{\mathbf{a}}_{\mathbf{k}, \lambda}^{+} e^{-i\mathbf{k}\cdot\mathbf{r}} \right) \bullet \hat{\mathbf{p}} \\ & \mathbf{M}_{if} = \langle \mathbf{f} \mid \widehat{\mathbf{H}}_{int} \mid \mathbf{i} \rangle + \sum_{n} \frac{\langle \mathbf{f} \mid \widehat{\mathbf{H}}_{int} \mid \mathbf{n} \rangle \langle \mathbf{n} \mid \widehat{\mathbf{H}}_{int} \mid \mathbf{i} \rangle}{\mathbf{E}_{i} - \mathbf{E}_{n} + \mathbf{i} \mathbf{\epsilon}} \\ & \mathbf{i} \rangle = |\psi_{i}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} ..., \mathbf{0}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{f} \rangle = |\psi_{i}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{1}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{0}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{0}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{0}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{0}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{0}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{n}_{\mathbf{k}in} - 1, ..., \mathbf{h}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{h}_{\mathbf{k}in} - 1, ..., \mathbf{h}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{h}_{\mathbf{k}in} - 1, ..., \mathbf{h}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{h}_{\mathbf{k}in} - 1, ..., \mathbf{h}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{h}_{\mathbf{k}in} - 1, ..., \mathbf{h}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | ..., \mathbf{h}_{\mathbf{k}in} - 1, ..., \mathbf{h}_{\mathbf{k}out} , ... \rangle_{fotoni} \\ & \mathbf{h}_{if} = |\psi_{a}\rangle_{el} | \mathbf{h}_{if} | \mathbf{h}_{if} - \mathbf{h}_{if} | \mathbf{h}_{if} | \mathbf{h}_{if} - \mathbf{h}_{if} | \mathbf{h$$

Elastic cross section

$$\frac{\frac{d\sigma}{d\Omega} = r_0^2 \frac{1}{m^2}}{\sum_{n} \frac{\langle \Psi_i | e^{i\vec{k}_n \vec{r}} \hat{\mathbf{e}}_{\vec{k}_n \lambda} \bullet \hat{\mathbf{p}} | \Psi_n \rangle \langle \Psi_n | e^{-i\vec{k}_n \vec{r}} \hat{\mathbf{e}}_{\vec{k}_n \lambda} \bullet \hat{\mathbf{p}} | \Psi_i \rangle}{\varepsilon_i - \varepsilon_n + \hbar \omega} + \Big|^2$$

$$\sum_{n} \frac{\langle \Psi_i | e^{-i\vec{k}_n \vec{r}} \hat{\mathbf{e}}_{\vec{k}_n \lambda} \bullet \hat{\mathbf{p}} | \Psi_n \rangle \langle \Psi_n | e^{i\vec{k}_n \vec{r}} \hat{\mathbf{e}}_{\vec{k}_n \lambda} \bullet \hat{\mathbf{p}} | \Psi_i \rangle}{\varepsilon_i - \varepsilon_n - \hbar \omega} + \frac{d\sigma}{d\Omega} \cong r_0^2 \frac{1}{m^2}$$
At the resonance is
$$\sum_{n} \frac{\langle \Psi_i | e^{i\vec{k}_n \vec{r}} \hat{\mathbf{e}}_{\vec{k}_n \lambda} \bullet \hat{\mathbf{p}} | \Psi_n \rangle \langle \Psi_n | e^{-i\vec{k}_n \vec{r}} \hat{\mathbf{e}}_{\vec{k}_n \lambda} \bullet \hat{\mathbf{p}} | \Psi_n \rangle}{\varepsilon_i - \varepsilon_n + \hbar \omega} + i\Gamma I2} \Big|^2$$

Total cross section at high energy

At high energy the contribution becomes:

$$\mathbf{M}_{if} = -\mathbf{i}r_{0}\left(\frac{2\pi\hbar c^{2}}{V}\right)\left(\frac{\hbar\omega_{k}}{mc^{2}}\right)\langle\psi_{i}\left|e^{i\vec{q}\vec{r}}\frac{\mathbf{i}\vec{q}\times\mathbf{\hat{p}}}{\hbar k^{2}}\right|\psi_{i}\rangle\left(\widehat{e}_{k_{out}\lambda}\times\widehat{e}_{k_{in}\lambda}\right)$$

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{\frac{2\pi}{\hbar} |\mathbf{M}_{if}^{A^{2}} + \mathbf{M}_{if}^{Ap}|^{2} g(\mathbf{E}_{f})}{\mathbf{n}_{\mathbf{k}_{in}} \mathbf{C} / \mathbf{V}} = \\ r_{0}^{2} \left| \left(\mathbf{\hat{e}}_{\mathbf{k}_{in}\lambda} \bullet \mathbf{\hat{e}}_{\mathbf{k}_{out}\lambda^{'}} \right) \langle \psi_{i} \left| \mathbf{e}^{-i\mathbf{q}\mathbf{r}} \right| \psi_{i} \rangle - i \left(\frac{\hbar\omega_{\mathbf{k}}}{\mathbf{mc}^{2}} \right) \langle \psi_{i} \left| \mathbf{e}^{i\mathbf{q}\mathbf{r}} \frac{\mathbf{i}\mathbf{q} \times \mathbf{\hat{p}}}{\hbar\mathbf{k}^{2}} \right| \psi_{i} \rangle \left(\mathbf{\hat{e}}_{\mathbf{k}_{out}\lambda^{'}} \times \mathbf{\hat{e}}_{\mathbf{k}_{in}\lambda} \right)^{2} \end{aligned}$$

$$E = -\vec{\mu}\vec{H}$$
$$\vec{F} = \operatorname{grad}\left(\vec{\mu}\vec{H}\right)$$

Is due to the variation of the energy for the non uniformity of the magnetic field of the radiation
Magnetic Interactions Magnetic dipole oscillations μ

Due to the variation of the torque associated with the time dependance of the magnetic field of the radiation

Strength of Magnetic Interactions

$$\frac{\left|\vec{F}_{M2}\right|}{\left|\vec{F}_{T}\right|} = \frac{\left|\operatorname{grad}\left(\vec{\mu}\cdot\vec{H}\right)\right|}{\left|eE\right|} = \frac{\left|\operatorname{grad}\left(\vec{\mu}\cdot\vec{H}_{0}e^{i\vec{k}\vec{r}}\right)\right|}{eE_{0}} = \frac{k}{2} \frac{\mu}{\lambda} \left(\frac{e\hbar}{2m}\right) \frac{1}{2} \frac{H_{0}}{E_{0}} \approx \frac{\pi\hbar}{mc\lambda} = \frac{\hbar\omega}{2mc^{2}} \approx 10^{-2}$$

$$\frac{Only \text{ magnetic}}{Electrons \text{ are active}} \Longrightarrow \frac{I_{mag.}}{I_{T.}} \approx 10^{-4} \left(\frac{Z_{mag.}}{Z}\right)^{2} \approx 10^{-6} \div 10^{-7}$$

de Bergevin e Brunel on NiO(1972)

- •NiO is an antiferromagnetic cubic crystal (T_{Neel}=250 ⁰C) •Ni⁺⁺ have only two electrons
- Electron spin are ferro-magnetically aligned in (111) plane
 They are anti-ferromagnetically aligned between (111) planes

Figure 10: Panel a: Superlattice magnetic reflection (3/2, 3/2, 3/2) of NiO measured in magnetic phase (25°) , and in the paramagnetic phase. The disappearance of the peak shows its magnetic origin. Panel b: The magnetic reflection (3/2, 3/2, 3/2) of NiO measured today at a third generation synchrotron radiation facility.

Hamiltonian in the relativistic approximation

$$\begin{split} \hat{\mathbf{H}}_{tot} &= \hat{\mathbf{H}}_{el.} + \hat{\mathbf{H}}_{rad.} = \sum_{i} \left(\frac{\left(\hat{\mathbf{p}}_{i} - \frac{\mathbf{e}}{c} \vec{\mathbf{A}} \right)^{2}}{2m} + \mathbf{V}(\vec{\mathbf{r}}_{i}) \right) + \\ \sum_{i} \left(-\frac{\mathbf{e}\hbar}{\mathbf{mc}} \vec{\mathbf{s}}_{i} \bullet \mathbf{rot} \vec{\mathbf{A}} + \frac{\mathbf{e}\hbar}{2m^{2}c^{2}} \vec{\mathbf{s}}_{i} \bullet \frac{\partial \vec{\mathbf{A}}}{\partial t} \times \left(\hat{\mathbf{p}}_{i} - \frac{\mathbf{e}}{c} \vec{\mathbf{A}}(\vec{\mathbf{r}}_{i}) \right) \right) + \\ \sum_{\mathbf{k},\lambda} \hbar \omega_{\mathbf{k}\lambda} \left(\mathbf{a}_{\mathbf{k}\lambda}^{+} \mathbf{a}_{\mathbf{k}\lambda} + \frac{1}{2} \right) \end{split}$$

Interaction terms in the relativistic approximation

$$\mathbf{\hat{H}}_{1} = \frac{\mathbf{e}^{2}}{2\mathbf{m}\mathbf{c}^{2}}\sum_{i}\mathbf{A}^{2}(\mathbf{\vec{r}}_{i})$$

Ĥ₃

$$\mathbf{\hat{H}}_{2} = \frac{\mathbf{e}}{\mathbf{mc}} \sum_{i} \vec{\mathbf{A}}(\vec{\mathbf{r}}_{i}) \bullet \mathbf{\hat{p}}_{i}$$

 $= -\frac{e\hbar}{mc} \sum_{i} \vec{s}_{i} \bullet rot \vec{A} \rightarrow Produces scattering (II order in P.T.)$

Relativistic approximation

$$\hat{\mathbf{H}}_{1} = \frac{\mathbf{e}^{2}}{2\mathbf{m}\mathbf{c}^{2}}\sum_{i}\mathbf{A}^{2}(\vec{\mathbf{r}}_{i})$$

$$\mathbf{\hat{H}}_{2} = \frac{\mathbf{e}}{\mathbf{mc}} \sum_{i} \mathbf{\vec{A}}(\mathbf{\vec{r}}_{i}) \bullet \mathbf{\hat{p}}_{i}$$

$$\hat{\mathbf{H}}_{3} = -\frac{\mathbf{e}\hbar}{\mathbf{mc}}\sum_{i}\vec{\mathbf{s}}_{i} \bullet \mathbf{rot}\vec{\mathbf{A}} \qquad \mathbf{\dot{\mathbf{H}}}$$

$$\hat{\mathbf{H}}_{4} \cong \frac{e\hbar}{2m^{2}c^{3}} \left(-\frac{e}{c}\right) \sum_{i} \vec{\mathbf{s}}_{i} \bullet \frac{\partial \vec{\mathbf{A}}}{\partial t} \times \vec{\mathbf{A}}(\vec{\mathbf{r}}_{i})$$

$$\Gamma_{if} = \frac{2\pi}{\hbar} \left| \langle f | \hat{H}_1 + \hat{H}_4 | i \rangle + \sum_{n} \frac{\langle f | \hat{H}_2 + \hat{H}_3 | n \rangle \langle n | \hat{H}_2 + \hat{H}_3 | i \rangle}{E_i - E_n + i\epsilon} \right|^2 \delta(E_i - E_f)$$

Scattering from I order perturbation

$$\mathbf{M}_{if}^{\mathrm{I}} = \frac{2\pi\hbar c^{2}}{V\omega} \mathbf{r}_{0}$$

$$\left(\sum_{i} \langle \boldsymbol{\psi}_{i} | e^{-i\vec{q}\cdot\vec{r}_{i}} | \boldsymbol{\psi}_{i} \rangle (\mathbf{\hat{e}}_{\mathbf{k}_{out}\lambda}^{*} \bullet \mathbf{\hat{e}}_{\mathbf{k}_{in}\lambda}) - i \left(\frac{\hbar\omega_{\mathbf{k}}}{mc^{2}}\right) \sum_{i} \langle \boldsymbol{\psi}_{i} | e^{-i\vec{q}\cdot\vec{r}_{i}} \vec{\mathbf{s}}_{i} | \boldsymbol{\psi}_{i} \rangle \bullet (\mathbf{\hat{e}}_{\mathbf{k}_{out}\lambda}^{*} \times \mathbf{\hat{e}}_{\mathbf{k}_{in}\lambda}) \right)$$

Contribution of H₂ and H₃

$$\mathbf{M}_{_{\mathbf{I}}}^{\mathbf{II}} = \left| \langle \mathbf{f} \left| \widehat{\mathbf{H}}_{1} + \widehat{\mathbf{H}}_{4} \right| \mathbf{i} \rangle + \sum_{\mathbf{n}} \frac{\langle \mathbf{f} \left| \widehat{\mathbf{H}}_{2} + \widehat{\mathbf{H}}_{3} \right| \mathbf{n} \rangle \langle \mathbf{n} \left| \widehat{\mathbf{H}}_{2} + \widehat{\mathbf{H}}_{3} \right| \mathbf{i} \rangle \right|^{2}}{\mathbf{E}_{\mathbf{i}} - \mathbf{E}_{\mathbf{n}} + \mathbf{i} \mathbf{\epsilon}} \right|^{2}$$

$$\mathbf{\hat{e}}_{_{\vec{k}\lambda}} \bullet \mathbf{\hat{p}}_{_{i}} \to -\hbar\vec{s}_{_{i}} \bullet \left(\vec{k} \times \mathbf{\hat{e}}_{_{\vec{k}\lambda}}\right)$$

Resonant term at high energy

After some hours of a tedious calculation we get:

Total contribution at high energy from the I order term in A

(II order perturbation theory)

$$\begin{split} \mathbf{M}_{if} &= -\mathbf{i} \left(\frac{\hbar \omega_{k}}{\mathbf{m} \mathbf{c}^{2}} \right) \mathbf{r}_{0} \left(\frac{2\pi\hbar \mathbf{c}^{2}}{\mathbf{V} \omega_{k}} \right) \\ &\sum_{i} \langle \boldsymbol{\psi}_{i} \left| \mathbf{e}^{i \vec{q} \vec{r}} \frac{\mathbf{i} \vec{q} \times \mathbf{\hat{p}}}{\hbar \mathbf{k}^{2}} \right| \boldsymbol{\psi}_{i} \rangle \left(\widehat{\mathbf{e}}_{\mathbf{k}_{out} \lambda^{'}} \times \widehat{\mathbf{e}}_{\mathbf{k}_{in} \lambda} \right) + \sum_{i} \langle \boldsymbol{\psi}_{i} \left| \mathbf{e}^{i \vec{q} \vec{r}} \vec{\mathbf{s}}_{i} \right| \boldsymbol{\psi}_{i} \rangle \times \\ &\times \left\{ \left(\mathbf{\hat{k}}_{out} \times \mathbf{\hat{e}}_{\mathbf{k}_{out} \lambda^{'}}^{*} \right) \mathbf{\hat{k}}_{out} \bullet \mathbf{\hat{e}}_{\mathbf{k}_{in} \lambda} - \left(\mathbf{\hat{k}}_{in} \times \mathbf{\hat{e}}_{\mathbf{k}_{in} \lambda} \right) \mathbf{\hat{k}}_{in} \bullet \mathbf{\hat{e}}_{\mathbf{k}_{out} \lambda^{'}}^{*} - \left(\mathbf{\hat{k}}_{out} \times \mathbf{\hat{e}}_{\mathbf{k}_{out} \lambda^{'}}^{*} \right) \times \left(\mathbf{\hat{k}}_{in} \times \mathbf{\hat{e}}_{\mathbf{k}_{in} \lambda} \right) \right\} \end{split}$$

Total cross section at high energy

$$\frac{d\sigma}{d\Omega} = \frac{\frac{2\pi}{\hbar} |M_{if}^{totale}|^2 g(E_f)}{\frac{n_k c}{V}}$$

$$\sum_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} | \psi_{i} \rangle \langle \hat{\mathbf{e}}_{\mathbf{k}_{out}\lambda'} \cdot \hat{\mathbf{e}}_{\mathbf{k}_{in}\lambda} \rangle - i \left(\frac{\hbar \omega_{\mathbf{k}}}{\mathbf{mc}^{2}} \right) \{ \sum_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} \frac{i\vec{q} \times \hat{\mathbf{p}}}{\hbar \mathbf{k}^{2}} | \psi_{i} \rangle \langle \hat{\mathbf{e}}_{\mathbf{k}_{out}\lambda'} \times \hat{\mathbf{e}}_{\mathbf{k}_{in}\lambda} \rangle + \sum_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} \vec{s}_{i} | \psi_{i} \rangle \times \\ \times \left\{ \langle \hat{\mathbf{e}}_{\mathbf{k}_{out}\lambda'} \times \hat{\mathbf{e}}_{\mathbf{k}_{in}\lambda} \rangle + \langle \hat{\mathbf{k}}_{out} \times \hat{\mathbf{e}}_{\mathbf{k}_{out}\lambda'} \rangle \right\} \hat{\mathbf{k}}_{out} \cdot \hat{\mathbf{e}}_{\mathbf{k}_{in}\lambda} - \langle \hat{\mathbf{k}}_{in} \times \hat{\mathbf{e}}_{\mathbf{k}_{in}\lambda} \rangle \hat{\mathbf{k}}_{in} \cdot \hat{\mathbf{e}}_{\mathbf{k}_{out}\lambda'} - \langle \hat{\mathbf{k}}_{out} \times \hat{\mathbf{e}}_{\mathbf{k}_{out}\lambda'} \rangle \right\}$$

Orbital momentum

$$\begin{split} &\sum_{i} \langle \psi_{i} \left| e^{i\vec{q}\vec{r}} \frac{i\vec{q} \times \hat{p}}{\hbar k^{2}} \right| \psi_{i} \rangle = \frac{i}{\hbar q} \left(4sin^{2}\theta_{B} \right) \langle \psi_{i} \left| e^{i\vec{q}\vec{r}} \hat{q} \times \hat{p} \right| \psi_{i} \rangle = \\ &\frac{i}{\hbar q} \left(4sin^{2}\theta_{B} \right) \hat{q} \times \langle \psi_{i} \left| e^{i\vec{q}\vec{r}} \hat{p} \right| \psi_{i} \rangle = -\frac{im}{e\hbar q} \left(4sin^{2}\theta_{B} \right) \hat{q} \times \langle \psi_{i} \left| e^{i\vec{q}\vec{r}} \hat{j} \right| \psi_{i} \rangle = \\ &-\frac{im}{e\hbar q} \left(4sin^{2}\theta_{B} \right) \hat{q} \times \vec{j}(\vec{q}) \end{split}$$

$$\vec{j} = c \left[\nabla \times \vec{M}_{L} \right] \longrightarrow \vec{j}(\vec{q}) = -ic \left[\vec{q} \times \vec{M}_{L}(\vec{q}) \right]$$

$$\begin{split} \sum_{i} &\langle \psi_{i} \left| e^{i\vec{q}\cdot\vec{r}} \frac{i\vec{q}\times\hat{p}}{\hbar k^{2}} \right| \psi_{i} \rangle = \frac{mc}{e\hbar q} \left(4sin^{2}\theta_{B} \right) \widehat{q} \times \left(\vec{q} \times M_{L}(\vec{q}) \right) = \\ &\frac{mc}{e\hbar} \left(4sin^{2}\theta_{B} \right) \widehat{q} \times \left(\widehat{q} \times M_{L}(\vec{q}) \right) \end{split}$$

Total cross section at high energy

$$\begin{split} \frac{d\sigma}{d\Omega} &= r_{0}^{2} \begin{vmatrix} \sum_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} | \psi_{i} \rangle \left(\widehat{e}_{k_{u}\lambda} \widehat{e}_{k_{u}\lambda} \right) \\ &- i \left(\frac{\hbar \omega_{k}}{mc^{2}} \right) \sum_{i} \left\{ \langle \psi_{i} | e^{i\vec{q}\vec{r}} \frac{i\vec{q} \times \hat{p}}{\hbar k^{2}} | \psi_{i} \rangle P_{L} + \langle \psi_{i} | e^{i\vec{q}\vec{r}} \vec{s}_{i} | \psi_{i} \rangle P_{S} \right\} \end{aligned}$$
$$\begin{aligned} P_{L} &= \left(\widehat{e}_{k_{out}\lambda} \times \widehat{e}_{k_{in}\lambda} \right) \end{aligned}$$
$$\begin{aligned} P_{S} &= \left(\widehat{e}_{k_{out}\lambda} \times \widehat{e}_{k_{in}\lambda} \right) + \left(\widehat{k}_{out} \times \widehat{e}_{k_{out}\lambda}^{*} \right) \widehat{k}_{out} \cdot \widehat{e}_{k_{u}\lambda} + \\ &- \left(\widehat{k}_{in} \times \widehat{e}_{k_{u}\lambda} \right) \widehat{k}_{in} \cdot \widehat{e}_{k_{u}\lambda}^{*} - \left(\widehat{k}_{out} \times \widehat{e}_{k_{u}\lambda}^{*} \right) \times \left(\widehat{k}_{in} \times \widehat{e}_{k_{u}\lambda} \right) \end{aligned}$$

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= r_{0}^{2} \left| \begin{array}{l} \sum\limits_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} | \psi_{i} \rangle (\widehat{e}_{k_{u}\lambda} \widehat{e}_{k_{u}\lambda}) \\ &- i \left(\frac{\hbar \omega_{k}}{mc^{2}} \right) \sum\limits_{i} \left\{ \langle \psi_{i} | e^{i\vec{q}\vec{r}} \frac{i\vec{q} \times \hat{p}}{\hbar k^{2}} | \psi_{i} \rangle P_{L} + \langle \psi_{i} | e^{i\vec{q}\vec{r}} \vec{s}_{i} | \psi_{i} \rangle P_{S} \right\} \right|^{2} \\ \sum\limits_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} \frac{i\vec{q} \times \hat{p}}{\hbar k^{2}} | \psi_{i} \rangle P_{L} &= \frac{mc}{e\hbar q^{2}} \vec{q} \times (\vec{M}_{L}(\vec{q}) \times \vec{q}) P_{L}^{i} \\ P_{L}^{'} &= \left(\widehat{e}_{k_{uu}\lambda^{'}} \times \widehat{e}_{k_{iu}\lambda} \right) 4sin^{2} \theta_{B} \\ \sum\limits_{i} \langle \psi_{i} | e^{i\vec{q}\vec{r}} \vec{s}_{i} | \psi_{i} \rangle &= \frac{mc}{e\hbar} \vec{M}_{S}(\vec{q}) \end{aligned}$$

Total cross section at high energy

$$\frac{d\sigma}{d\Omega} = r_0^2 \left| \frac{\sum_{i} \langle \psi_i | e^{i\vec{q}\vec{r}} | \psi_i \rangle (\hat{e}_{k_{out}\lambda} \hat{e}_{k_{in}\lambda})}{-i\left(\frac{\hbar\omega_k}{mc^2}\right) \left(\frac{mc}{e\hbar q^2} (\vec{q} \times \vec{M}_L(\vec{q}) \times \vec{q}) P'_L + \frac{mc}{e\hbar} \vec{M}_s(\vec{q}) P_s\right) \right|^2$$

$$\vec{\mathbf{P}}_{\mathrm{L}} = \left(\widehat{\mathbf{e}}_{\mathbf{k}_{\mathrm{out}}\lambda^{\mathrm{c}}} \times \widehat{\mathbf{e}}_{\mathbf{k}_{\mathrm{in}}\lambda}\right) 4 \sin^{-2} \theta_{\mathrm{B}}$$

$$\vec{\mathbf{P}}_{S} = \left(\widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda'} \times \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda}\right) + \left(\widehat{\mathbf{k}}_{out} \times \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda'}^{*}\right) \widehat{\mathbf{k}}_{out} \bullet \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda}$$
$$- \left(\widehat{\mathbf{k}}_{in} \times \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda}\right) \widehat{\mathbf{k}}_{in} \bullet \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda'}^{*} - \left(\widehat{\mathbf{k}}_{out} \times \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda'}^{*}\right) \times \left(\widehat{\mathbf{k}}_{in} \times \widehat{\mathbf{e}}_{\mathbf{k}_{u}\lambda}\right)$$