Interaction between matter and radiation: an
introduction

Overview of the basic processes

Absorption (classical and quantum)

Scattering SClassical and guantumz

Basic elements to follows lectures

To introduce relativistic effects




Main interactions
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Compton I'homson

Photon absorption: excitation
with or without emission of electrons

Photon scattering: elastic > Thompson (Magnetic)
inelastic 2 Compton (Raman)
Resonant (elastic and inelastic)




Indirect effects: decay processes

It looses energy through
decay processes

Decay processes
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Experimental techniques

Absorption
Photoemission
Scattering

Elastic Scattering: Diffraction, SAXS
Inelastic Scattering: Compton, IXS

Resonant scattering: R(I)XS

Fluorescence Yield
Auger spectroscopy

What we measure in experiments?




Experimental techniques: what we measure?

Experimental Setup

Here is a schematic of the XAS experiment

Sampla
Optics

Amplifiers &
Computer

Absorption [ (E)=/e™"”

»> W(E) is called the absorption coefficient

»> it describes quantitatively how the energy of a beam
is transferred to the matter

> It is measured in m!

» In a thickness 1/u the intensity is reduced to 1/e




The cross section o

photon beam

is the number of photons per second
per unit cross area of the beam
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NAS hv is the total power of a photon beam




The cross section o

N, AS=N, (AS—-o)

c has no geometrical meaning:
it is a measure of the interaction
It is called “cross section”

1 barn = 1024 ¢cm?



The cross section ¢ and the absorption coefficient

p is the density
of the objects
pAV = pASAx

N(x)=N_e=%
IxX)=1_e™




Cross section o — 111

p is the density
of the objects
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~ o is the cross section
> of each object




Absorption cross section

Absorption
Photons are removed
from the beam because
are absorbed o,
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Scattering cross section

Scattering
Photons are removed
because are partially

scattered into a
different direction

scattered
electron
X-ray photon electron ~ -7

scattered
X-ray photon

Total cross section 6 = G, ;. Cyeait.




Differential Cross Section do/dQ2

E—
Incoming
Photons




Cross section & Probability

Incoming
Photons

Probability




Cross Sections: Classical definition

Differential cross section:
it is the differential power
scattered in dQ2
normalized to the incoming power
and to the density of scattering
objects




Double Differential Cross Section d2c/dQdE

Incoming
photons
of energy E,

d*N

events

dQdE

Kk

Outcoming
photons
of energy
E * dE/2

dzc

deEk

— Nphotons X (p dX)X




Total cross section o of atoms
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Alomic photoionisation

cross section of Cu K-edge

Mormalised Spectra:
Cu()O (Cu,0)
Cu(INO (CuQ)
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Total cross section o of atoms
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Matter €<Interaction—> Radiation I

Classical description

Radiation:

Electromagnetic waves are described by Maxwell equations

Matter:
Macroscopic optical constants: index of refraction, absorption
coefficient, reflection coefficient, dielectric function...

Two independent constant are enough in isotropic materials

Deeper:
microscopic origin of optical constants:

description of the matter as an ensemble of classical oscillator




Classical Approach
*Radiation: Electromagnetic wave composed of E and B

Mattor: Ongical - Refraction index: n(1)
_a Cr: Upucal constan Absorption coefficient: p(\)

Interaction: Lorentz force

Measurement: gives n(A) and p(A)

Microscopic model of the charge motion = n(}) and p(A)




Reflection and refraction

Vacuum n,=1 [9 e\ R I, ‘nz — I,
¢

P

O~m/2 I, _‘n2+n1‘2

Medium n,#0 v
Iy
Snell law of refraction n; is the
n,c0s0=n,cos( index of refraction

nis~to1/v=> v=¢/n




Absorption coefficient




Plane Wave in vacuum

c— 1 The radiation is a wave and moves with a
B, speed equal to ¢
Plane waves
L i(ﬁf —c)t) L i(ﬁ? —(:)t)
E= EOe B = BOe

Real part > E=E cos(ﬁf —cot)

0

K is the wavevector; it gives the direction of the propagation



Plane Wave in vacuum

Plane waves

E:EO cos(ﬁf—mt) ]§=]§0 cos(ﬁ?—mt)

- =

Kis the,’wav\avector; ( :
it gives the direction of the propagation '’




Plane Wave in vacuum

Plane waves

E=Eo cos(EF-wt) §=§Ocos(l?F-a)t)

Dispersion relation

A
Jv=0=5 2 ¢
T 27




Plane Wave in vacuum




E _ Eoei(ﬁf-a)t) E _ I—éoei(f&-a)t)

Associated to the radiation there is an energy
density w equal to:

w(t) = %SOE(t)Z + LB(t)2

21,




Plane Wave in vacuum

w(t) = %gOE(t)Z + iB(t)z =g E(t)’

Intensity I:
Mean energy flow per unit time and unit area

_ 1
The intensity I of the beamis: I=wc= cESOEf,




Plane Wave in matter




Plane Wave in matter

k2 —ua(z)z =( -:>k2 —n—(z)

— 27V=27C




E.M. Waves in matter
— 1/2
n_(gr )
refraction index
. C \ \
‘V‘ =—<C In the matter the light is
I slower than in the vacuum

In the matter the
wavelength is shorter
than in the vacuum




Origin of the dielectric function and of the index
of refraction (qualitative)
The electric field of the radiation cause a motion of the
microscopic charges

Electrons and nuclei moves in opposite directions
giving rise to microscopic electric dipoles

Negative charge moves




Origin of the dielectric function and of the index
of refraction (qualitative)

Negative charge moves
An electric dipole is induced

Dipoles generate additional electric fields that add to
the external (radiation) one

The dielectric function describe the modifications induced
by the microscopic dipoles to the electric field




Origin of the dielectric function and of the index of
refraction (qualitative)

The induced electric dipole and the electric field are not in phase
(because of the electron and nuclei mass)

The dielectric function is a complex quantity with a
real and an imaginary part

g = g, Hig, = |g|ei?



Origin of the dielectric function and of the index of
refraction (qualitative)

— c
20 _
E T Evac. o

e ‘8

Amplitude relation is determined by the modulus
(~ real part)
*Phase relation




Complex dielectric function

€= g)€,= €, (&, T 1g,)

o 1 i complex n=nif
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Complex wavevector
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Wave-damping: Absorption coefficient

Stan.dard plane wave Amplitude
as in vacuum with ~ P ~ B reduction
7\,:7\,0/11 k — k

1

C

Intensity I oc E2 Absorption coefficient




Kramers-Kronig Relation
The real and imaginary parts of the dielectric function
depend one on the other

Causality: the dipole moment P(t) at time t is determined only
by the values of the electric field at time t’<'t




Microscopic model
The matter is composed of positive and negative charges

At equilibrium the positive and
negative charges do not give rise
to any dipole moment

< »
< »

Oscillating negative charge
Damped oscillator




Induced dipole moment

_¢E,
" m (o' +iyo+o’)

Ze'E 0 1 »

p(t) = Zer(t)=

m (-o’ +iy(o+0)f,)e




Dielectric function
N = number of atoms per unit volume

& =

iot

_ NZe’E, 1

- m (~e'tiyo+o?)
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em (-0’ +iyo+o’)

NZe’ 1

e =1l+yx=1+

em (-0’ +iyo+ o)




Electric field and dielectric function
(in simple word)

NZe®
em (-0’ +iyo+ o)

e =1+yxy=1+




Real and imaginary part of the dielectric function

Ze’ 1
8r=1+x=1+N c

em (-0 +iyo+o’)




General behavior of the real part of the dielectric
function




Behavior of the real part above o,

There is no propagation into the matter
no energy exchange

K~ oln,




Behavior of the real part at high energy

NZe*
£,mMO"

gl(a) >> a)O)z 1-




Refraction index at high energy




Total Reflection

The critical angle O, is defined by cos ¢=1
9

cos0,=n

V20 = few 10




Use of Total Reflection

Vacuum n=1

Medium n<l1

0 =25 =few10"

*X-ray Mirrors
Surface Diffraction
‘REFLEXAFS



Total Reflection: evanescent wave




REFLEXAFS: evanescent wave

penetratlon length

A= _
- r — kac =12 A (Au)

Under total reflection condition the X-ray beam is confined
in a layer of few tens of A from the surface

Surface sensitivity
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Relative Intensity (Incident

Total Reflection: evanescent wave

Intensity at Interface
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Somewhat
counterintuitively, the
amplitude of the
evanescent wave can
actually be greater than
the incident one.



Behavior of the imaginary part
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—— Imaginary part
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Absorption coefficient

—— Real part

—— Imaginary part
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Scattering

Electric field generated by an oscillating point electric charge q
The charge is oscillating under the action of the electric field of
the incoming radiation

The electric field is in the plane (OzP)




Scattering by a free electron (0>>o,




Differential cross section

Differential cross section ( normalized differential scattered power)

=9V _ (leoEzjcdS
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Electron classical radius
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Electron classical radius

dG 1 e2 2 ° 2 2 o 2
— = —— | sin"O=r sin" 0
dQ (4nsomc2j e

r, is called the electron classical radius=2.818 10-1°> m

2
(9
In Gauss system
mcC




Total scattering cross section: polarized radiation

Linear Polarization

Thomson cross section




Scattering Plane

The plane formed by the direction of the incoming
and outcoming radiation is called is scattering angle
It is the plane formed by k;, and Kk,

The angle O is called the scattering angle
(Sometimes the scattering angle is indicated with 2 0,)




Incoming Radiation polarized perpendicular to
the Scattering Plane

Incoming radiation polarized perpendicular to the scattering plane 7,
-2 0=m1/2 = sin6=1
Scattering radiation perpendicular to the scattering plane

e 2 2 2 ([~ A )2
= sin Gre—re—(e. oeout)

m




Incoming radiation polarized in the Scattering
Plane

z

Incoming radiation polarized in
the scattering plane 7,
It is also perpendicular to Kk,

Scattering radiation is polarized
in the scattering plane

0+0 =—
2




Charge distributions: Scattering Factor




Scattering Factor 1V

_ IdE o ESlngle Ie are dV = ESingle f((_j)

f is called the scattering factor

f is the Fourier Transform of the charge density (in e.u.)
S ————




Scattering Factor V
E L= E it f (q) f is called the scattering factor

f(q)=[e "p dV

—

i=k, -k,

Number of electrons per unit volume

Scattering amplitude o to:
Fourier Transform of the charge density (in electron units)
For atoms, molecules, crystals ...

90 _ r(e, o2, ) 1(@) [




Overview
0 > e >

R re2 (éin ¢ éout )2 ‘f((_i)‘z



Anomalous correction




Anomalous correction

At low frequency electron do not
- i Contribute to the scattering

behaves like free electrons

At high frequency the electron




Anomalous correction for atoms

Germanium Z=32

' (electron unit)
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Anomalous correction for atoms: £’ and 1 of Ge

Germanium Z=32
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Anomalous correction for Au

. | A T
184 1884
Fhoton Energy ceWl




KK & Optical theorem

2

- mc
2Ne’A 2

f oC U




Anomalous scattering to solve the phase problem




Friedel law

When f, and f; are real - I(q)=I(-q)
)1 (f +f iq l’A‘l’B ) (f* + —lq rA_rB

Friedel law




Friedel law
When f, and f; are complex - I(q)#1(-q)

ig FA—FB))Z _ (fA 4 fBeiq(fA—fB))(fA* 4 f]:e—i(i(m—ﬁ;))

—iq i:A_i:]g))z — ( _i(_i(i:A_i:B))( * * +i(_i(FA_FB))
=\f +tfe f +fe

1(G) - I(—G) « Re 1102 ~7) {Re 1e/(®2~®s)




Magnetic Interactions

An electromagnetic wave transport both
an electric and a magnetic field

Is due to the variation of
the energy for the
non uniformity of the
magnetic field of the radiation




Magnetic Interactions

Magnetic dipole oscillations

Due to the variation of
the torque associated with
the time dependance of the

magnetic field of the radiation




Strength of Magnetic Interactions




de Bergevin e Brunel on NiO(1972)

*NiO e’ un cristallo cubico antiferromagnetico (Ty,,~250 °C)
*Gli ioni Ni"" hanno due soli spin accoppiati

*Gli spin sono allineati magneticamente nel piano (111)

*Ed antiferromagneticamente tra i piani (111)

15000 1

counts/sec

Theta (deg)

0
292 293 M4 295 M6 2
Theta (deg)

Figure 10: Panel a: Superlattice magnetic reflection (3/2, 3/2, 3/2) of NiO mea-
sured in magnetic phase (25°), and in the paramagnetic phase. The disappearance
]

of the peak shows its magnetic oripin. Panel b: The magnetic reflection (3/2. 3/2.
(2 5 [

3/2) of NiO measured today at a third generation synchrotron radiation facility.




Matter €<Interaction—> Radiation 11
Semi-Classical approach

Radiation:
Electromagnetic waves described by Maxwell equations

Matter:
Quantum system obeying Schrodinger equation
(oscillators,...)




Semiclassical approach

Radiation: classical
Electromagnetic field described by the potential vector A

Matter: Quantum system




Semiclassical approach: the radiation

One vector is enough

to describe ‘ Vector potential A(r,t)

e.m. radiation

E = _1oA_ gradV

¢ Ot




Semiclassical approach: the radiation

. 10A
E = ——a——gradV

ot




Semiclassical approach: the matter

Matter: Quantum system

The system is characterized by its Hamiltonian H,
and by its eigenfunctions y_and energy eigenvalues E_
obtained by solving the Schrodinger equation




Interaction Hamiltonian




Perturbation Hamiltonian

Linear in A

—_

A e i (kf—ot )

Time dependent terms




Fermi Golden rule

The perturbation due to the e.m. field induce
transitions from the ground state y, to excited
states y, with a probability per unit time given by

v, [H, v (v, [H,|vy,)
“E

E + 710 + i€




v+ v ..‘f‘f.\.u\"

+h(ﬂ+1£.




Absorption Coeftficient

1dI
I=le"">u=—-—

I dx




Absorption Coefficient:dipole approximation

Al .
n="" OLZwa “(&, p) v, ) 3(E, -E, - o)
m(D

4n2hoc
mao

(v, I8, ep)w, ‘B(E -E - o)

Optical transitions: A = 5000 A = always valid




In the case of X-ray, the wavelength is few A, i.e.
of the same order as the extensions of the atomic orbitals

In general the core states spatial the energy of the absorption edges

extension reduces as 1/Z increases as Z2 and the wavelength
with increasing the Z number of the of the radiation needed to excite a core

atom with respect to the hydrogen level decreases as 1/7Z.2
orbitals

Therefore for high Z elements,
deviations from the dipole
approximations must be expected and
must be taken into account.




Absorption Coetficient: electric dipole

A A im
(W Blw,)= (v, mrly,)=="~ )=

7
im(E, —E )
2

<\|’f ‘f““’i> = im(‘)<\|’f ‘f““’i>

W= 47t2h(ooc2‘<\|1f (&

A

u=4dm'hoo (v,|(@,

D(E, ) =Density of states




Scattering

The full elastic and inelastic scattering cross section

In particular:

o the anomalous scattering

o the resonant scattering

o additional scattering arising from the magnetic
interaction between the electromagnetic field and the
electrons

Full quantum approach is needed, in which:

 the matter is treated as a quantum system
* the electromagnetic field as a ensamble of photons




The electromagnetic field and its quantum states

m —',;\‘,...’m l—{'";\‘ n —’,;\‘,...’n l—(",;\‘, >




Interactions in quantum approach




Fermi Golden Rule

The perturbation induces transitions between initial and
Final states with a propability w,,

2 2
r,="" M, 3, ~E)=""M,[g(E)

m) = ‘\ll>el. nn,..




Scattering - 1

Scattering involves two photons:
one is removed from the initial state Kk,
The second is created in the final state K,

l> = ‘\lli>el. JELL Ein"”OEout "">

fotoni

‘f> = ‘\llf >el. L Ein-l’"”lﬁout "">fotoni

Such transitions are due to:

1. terms in A? in the first order
(Thompson and Compton scattering )

2. terms in Aep in the second order
(Anomalous and resonant scattering)




Elastic and inelastic scattering
1 order perturbation theory for the term ~ A2

I order perturbation theory for the term ~ A?

)=, ) ool oo O ’>

photons

£)=|y,), |, Lyl >

M, =(Wien) — Lo,

&‘W,Q%> =




Scattering - I11

2mwhe’ 2mhe’
V(!)ki" Vﬁ)kout

A+

Ei,xaf(o,m

) r,= e2/mc?=2.8179 10-3 cm

A A i(-k, +k, )Fa+ A .
_ . _ out in _ _ :
ut 9 + (ekout’)\';\' ekin’)\' k akont’)“}\‘akin’)\'

] (éﬁ"x ) éﬁw’“) \/E@’f 2e™ |y, )=
(élii,x ® éﬁxx)\/ﬁ <\|’f e ldr \|’,>




Scattering - IV




Scattering Cross Section
(non relativistic)




Elastic scattering

Elastic scattering 2 o,,= o,

Final electronic state equal to their initial




Inelastic Scattering at very high energy




Inelastic Scattering at very high energy
do ) (A A 2 L2
( j =T, (einem)(l—\f(q) )

aQ

The sum of the elastic and inelastic cross sections is equal to the
Classical cross section of a free electron




Contribution due to Aep

: int ‘n><n ‘ﬁ int . i>

E.—-E _ +i¢
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Elastic cross section

iami‘/\ A
b, op

\|In><\|ln l e

At the resonance—~>
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Total cross section at high energy

At high energy the contribution becomes:

2ahe’ | ho,




Magnetic Interactions

An electromagnetic wave transport both
an electric and a magnetic field

Is due to the variation of
the energy for the
non uniformity of the
magnetic field of the radiation




Magnetic Interactions

Magnetic dipole oscillations

Due to the variation of
the torque associated with
the time dependance of the

magnetic field of the radiation




Strength of Magnetic Interactions
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de Bergevin e Brunel on NiO(1972)

*NiO is an antiferromagnetic cubic crystal (Ty.,=250 °C)
*Ni"™" have only two electrons

*Electron spin are ferro-magnetically aligned in (111) plane
*They are anti-ferromagnetically aligned between (111) planes
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Figure 10: Panel a: Superlattice magnetic reflection (3/2, 3/2, 3/2) of NiO mea-
sured in magnetic phase (25°), and in the paramagnetic phase. The disappearance

g 0

of the peak shows its magnetic origin. Panel b: The magnetic reflection (3/2, 3

-'1_.-"'?] of Ni0Q measured today at a third generation svnchrotron radiation facility.




Hamiltonian in the relativistic approximation

h
> (—es o rotA +
i mc

X 1
%hmm a_a. + E




Interaction terms in the relativistic

approximation

A en _ <
H,=——735,0 rotA | - Produces scattering (II order in P.T.)
mc '

I order scattering in P.T.




Relativistic approximation

en ~
——— XS, erOtA
mc i




Contributo di H, allo scattering

Out of phase
of the spin densit
Reduction P M
factor

Polarization
dependance




Scattering from I order perturbation




Contribution of H, and H,




Resonant term at high energy

After some hours of a tedious calculation we get:

2mwhe’
L v T W

M, = i "

igr =
&5 v,

mc’

Out of phase

Reduction
factor

Fourier transform

of the spin density o
Polarization

dependance



]
Total contribution at high energy

from the I order term in A

(mj [Znhczj
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Total cross section at high energy




Orbital momentum
Sl Ly - hq(4silf93Xwi\eiﬁfﬁXﬂwi>=
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Total cross section at high energy

= (v w68, 2
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Total cross section at high energy

TSSO
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Total cross section at high energy
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